As a typical cyber-physical system (CPS), electrified vehicle becomes a hot research topic due to its high efficiency and low emissions. In order to develop advanced electric powertrains, accurate estimations of the unmeasurable hybrid states, including discrete backlash nonlinearity and continuous half-shaft torque, are of great importance. In this paper, a novel estimation algorithm for simultaneously identifying the backlash position and half-shaft torque of an electric powertrain is proposed using a hybrid system approach. System models, including the electric powertrain and vehicle dynamics models, are established considering the drivetrain backlash and flexibility, and also calibrated and validated using vehicle road testing data. Based on the developed system models, the powertrain behavior is represented using hybrid automata according to the piecewise affine property of the backlash dynamics. A hybrid-state observer, which is comprised of a discrete-state observer and a continuous-state observer, is designed for the simultaneous estimation of the backlash position and half-shaft torque. In order to guarantee the stability and reachability, the convergence property of the proposed observer is investigated. The proposed observer are validated under highly dynamical transitions of vehicle states. The validation results demonstrates the feasibility and effectiveness of the proposed hybrid-state observer.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2017.2738003DOI Listing

Publication Analysis

Top Keywords

half-shaft torque
12
hybrid states
8
backlash position
8
position half-shaft
8
electric powertrain
8
system models
8
hybrid-state observer
8
proposed observer
8
observer
6
vehicle
5

Similar Publications

The tractor power-shift transmission (PST) research and development is a design process that incorporates many disciplines such as mechanical, control, and electronics. Modeling and simulation are typically dependent on various commercial tools for each discipline, making simulation, integration, and verification of system-level models problematic. Aiming at this, we propose a PST multi-domain co-simulation method based on the functional mock-up interface (FMI) standard, analyze the FMI-based simulation mechanism and the PST simulation system logical structure, and established the PST mechanical system model, control system model, tractor engine model, and tractor dynamic model.

View Article and Find Full Text PDF

As a typical cyber-physical system (CPS), electrified vehicle becomes a hot research topic due to its high efficiency and low emissions. In order to develop advanced electric powertrains, accurate estimations of the unmeasurable hybrid states, including discrete backlash nonlinearity and continuous half-shaft torque, are of great importance. In this paper, a novel estimation algorithm for simultaneously identifying the backlash position and half-shaft torque of an electric powertrain is proposed using a hybrid system approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!