Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoparticles of face-centered cubic Cu are modeled using the Sutton-Chen potential. Shapes ranging from perfect cubes through to octahedrons are modeled and characterized. Bulk properties, surface energies, vacancy formation energy, E , and cohesive energies, E , are investigated for particles simulated to up to 5 nm in diameter. Below the subsurface layers, particles larger than 1 nm diameter are compared well to bulk. Of the different shapes, rhombicuboctahedrons are both more stable and have more reactive surfaces. As E is dependent on surface orientation, there is a little correlation with size and E is mostly dependent on nanoparticle shape. E is not as dependent on surface orientation and shows both size and shape dependency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201701829 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!