Slot Antenna Integrated Re-Entrant Resonator Based Wireless Pressure Sensor for High-Temperature Applications.

Sensors (Basel)

Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China.

Published: August 2017

The highly sensitive pressure sensor presented in this paper aims at wireless passive sensing in a high temperature environment by using microwave backscattering technology. The structure of the re-entrant resonator was analyzed and optimized using theoretical calculation, software simulation, and its equivalent lump circuit model was first modified by us. Micro-machining and high-temperature co-fired ceramic (HTCC) process technologies were applied to fabricate the sensor, solving the common problem of cavity sealing during the air pressure loading test. In addition, to prevent the response signal from being immersed in the strong background clutter of the hermetic metal chamber, which makes its detection difficult, we proposed two key techniques to improve the signal to noise ratio: the suppression of strong background clutter and the detection of the weak backscattered signal of the sensor. The pressure sensor demonstrated in this paper works well for gas pressure loading between 40 and 120 kPa in a temperature range of 24 °C to 800 °C. The experimental results show that the sensor resonant frequency lies at 2.1065 GHz, with a maximum pressure sensitivity of 73.125 kHz/kPa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621066PMC
http://dx.doi.org/10.3390/s17091963DOI Listing

Publication Analysis

Top Keywords

pressure sensor
12
re-entrant resonator
8
pressure loading
8
strong background
8
background clutter
8
pressure
6
sensor
6
slot antenna
4
antenna integrated
4
integrated re-entrant
4

Similar Publications

Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications.

Nat Commun

January 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China.

Skin-like sensors capable of detecting multiple stimuli simultaneously have great potential in cutting-edge human-machine interaction. However, realizing multimodal tactile recognition beyond human tactile perception still faces significant challenges. Here, an extreme environments-adaptive multimodal triboelectric sensor was developed, capable of detecting pressure/temperatures beyond the range of human perception.

View Article and Find Full Text PDF

This research presents a systematic review of the application of metal-organic frameworks (MOFs) to detect volatile organic compounds (VOCs). VOCs, compounds with high vapor pressure at ambient temperature and normal pressure, are widely present in a variety of industrial and living environments. VOCs are not only hazardous to the environment but also have a severe impact on human health.

View Article and Find Full Text PDF

Objectives:  This study aims to detect early class I, II, and III malocclusions through the muscle strength of the lips, tongue, masseter, and temporalis.

Materials And Methods:  The study subjects were 30 pediatric patients with predetermined criteria. The subjects were divided into class I, II, and III malocclusions where each classification of malocclusion amounted to 10 people.

View Article and Find Full Text PDF

Emerging Wearable Acoustic Sensing Technologies.

Adv Sci (Weinh)

January 2025

Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China.

Sound signals not only serve as the primary communication medium but also find application in fields such as medical diagnosis and fault detection. With public healthcare resources increasingly under pressure, and challenges faced by disabled individuals on a daily basis, solutions that facilitate low-cost private healthcare hold considerable promise. Acoustic methods have been widely studied because of their lower technical complexity compared to other medical solutions, as well as the high safety threshold of the human body to acoustic energy.

View Article and Find Full Text PDF

Hypertension constitutes a significant risk factor for the development of many coronary artery diseases. In recent years, the advancement of technology and artificial intelligence has led to significant research and breakthroughs in wearable devices that can monitor blood pressure (BP). These devices offer continuous, real-time BP readings, facilitating the early detection and prevention of hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!