Purpose: Longer-lasting electroretinographic recordings of the isolated murine retina were initially achieved by modification of a phosphate-buffered nutrient solution originally developed for the bovine retina. During experiments with a more sensitive mouse retina, apparent model-specific limitations were addressed and improvements were analyzed for their contribution to an optimized full electroretinogram (ERG).
Material And Methods: Retinas were isolated from dark-adapted mice, transferred to a recording chamber and superfused with different solutions. Scotopic and photopic ERGs were recorded with white flashes every 3 minutes. The phosphate buffer (Sickel-medium) originally used was replaced by a carbonate-based system (Ames-medium), the pH of which was adjusted to 7.7-7.8. Moreover, addition of 0.1 mM BaCl was investigated to reduce b-wave contamination by the slow PIII component typically present in the murine ERG.
Results: B-wave amplitudes were increased by the pH-shift (pH 7.4 to pH 7.7) from 22.9 ± 1.9 µV to 37.5 ± 2.5 µV. Improved b-wave responses were also achieved by adding small amounts of Ba (100 µM), which selectively suppressed slow PIII components, thereby unmasking more of the true b-wave amplitude (100.0% with vs. 22.2 ± 10.7% without Ba). Ames medium lacking amino acids and vitamins was unable to maintain retinal signaling, as evident in a reversible decrease of the b-wave to 31.8 ± 3.9% of its amplitude in complete Ames medium.
Conclusions: Our findings provide optimized conditions for ex vivo ERGs from the murine retina and suggest that careful application of Ba supports reliable isolation of b-wave responses in mice. Under our recording conditions, murine retinas show reproducible ERGs for up to six hours.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02713683.2017.1339807 | DOI Listing |
J Neuroinflammation
January 2025
Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
Background: The retinal degenerative diseases retinitis pigmentosa (RP) and atrophic age- related macular degeneration (AMD) are characterized by vision loss from photoreceptor (PR) degeneration. Unfortunately, current treatments for these diseases are limited at best. Genetic and other preclinical evidence suggest a relationship between retinal degeneration and inflammation.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1 and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1 mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models.
View Article and Find Full Text PDFDiabetologia
January 2025
Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
Aims/hypothesis: Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression.
View Article and Find Full Text PDFCell Death Discov
January 2025
Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
Rhodopsin is the light-activated G protein-coupled receptor that initiates vision in photoreceptor cells of the retina. Numerous mutations in rhodopsin promote receptor misfolding and aggregation, causing autosomal dominant retinitis pigmentosa, a progressive retinal degenerative disease. The mechanism by which these mutations cause photoreceptor cell death, and the role aggregation plays in this process is still unclear.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.
Purpose: This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs).
Methods: A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!