Two new irregular hexagons (6 and 7) were synthesized from a pyrazine motif containing an organometallic acceptor clip [bearing platinum(II) centers] and different neutral donor ligands (4,4'-bipyridine or pyrazine) using a coordination-driven self-assembly protocol. The two-dimensional supramolecules were characterized by multinuclear NMR, mass spectrometry, and elemental analyses. Additionally, one of the macrocycles (6) was characterized by single-crystal X-ray analyses. Macrocycles are unique examples of [2 + 2] self-assembled ensembles that are hexagonal but irregular in shape. These hexagon frameworks require the assembly of only four tectons/subunits. The cytotoxicity of platinum(II)-based macrocycles was studied using various cell lines such as A549 (human lung carcinoma), KB (human oral cancer), MCF7 (human breast cancer), and HaCaT (human skin keratinocyte) cell lines, and the results were compared with those of cisplatin. The smaller macrocycle (7) exhibited a higher cytotoxic effect against all cell types, and its sensitivity was found to be comparable with that of cisplatin for A549 and MCF7 cells. Cell cycle analysis and live propidium iodide staining suggest that the macrocycles 6 and 7 induced a loss of membrane integrity that ultimately might lead to necrotic cell death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.7b01561 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Northeast Normal University, Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Institute of Functional Material Chemistry, Local United Engineering Lab for Power Battery, CHINA.
Construction of metal-organic cages (MOCs) with internal modifications is a promising avenue to build enzyme-like cavities and unlocking the mystery of highly catalytic activity and selectivity of enzymes. However, current interests are mainly focused on single-metal-node cages, little achievement has been expended to metalloclusters-based architectures, and the in situ endogenous generation of metal clusters. Herein, based on the hard-soft-acids-bases (HSAB), the metalloclusters-based heterometallic MOC (Cu3VMOP) constructed of [Cu3OPz3]+ and [V6O6(OCH3)9(SO4)(CO2)3]2- clusters was obtained by one-pot method.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States.
This paper describes the use of the layered conductive metal-organic framework (MOF) (nickel)-(hexahydroxytriphenylene) [Ni(HHTP)] as a model system for understanding the process of self-assembly within this class of materials. We confirm and quantify experimentally the role of the oxidant in the synthetic process. Monitoring the deposition of Ni(HHTP) with infrared spectroscopy revealed that MOF formation is characterized by an initial induction period, followed by linear growth with respect to time.
View Article and Find Full Text PDFChemistry
November 2024
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
Numerous metallo-supramolecules with well-defined sizes and shapes have been successfully constructed via the strong coordination interaction between terpyridine (TPY) moieties and ruthenium cations. However, the pseudo-octahedral geometry of
Inorg Chem
November 2024
Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States.
Herein, we report the reaction between four 1,2-dibromoxylenes and two tetra-3-pyridylporphyrins for the formation of a cofacial porphyrin core spanned by dipyridinium xylene moieties. The metal-free organic nanocage (oNC) was synthesized in one twenty-four h step at a gram-scale with a 91.5% yield.
View Article and Find Full Text PDFInorg Chem
November 2024
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
Synthesis of interlocked supramolecular cages has been a growing field of interest due to their structural diversity. Herein, we report the template-free synthesis of a Ru(II) triply interlocked [2] catenane using coordination-driven self-assembly. The self-assembly of a triazine-based tripyridyl donor (2,4,6-tris(5-(pyridin-4-yl)thiophen-3-yl)-1,3,5-triazine) with a dinuclear Ru(II) acceptor (Ru(dhnq)(η--cymene))(CFSO)) yielded two distinct structures depending on the solvent and concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!