To determine the requirement for parvalbumin (PV) expressing GABAergic interneurons of the nucleus accumbens (NAc) in the behavioral adaptations induced by amphetamine (AMPH), we blocked synaptic vesicle release from these neurons using Cre-inducible viral expression of the tetanus toxin light chain in male and female PV-Cre mice. Silencing PV+ interneurons of the NAc selectively inhibited the expression of locomotor sensitization following repeated injections of AMPH and blocked AMPH-induced conditioned place preference (CPP). AMPH induced significantly more expression of the activity-dependent gene Fos in both D1 and D2 dopamine receptor-expressing medium spiny neurons (MSNs) of the NAc of PV+ interneuron silenced mice, suggesting a function for PV+ interneuron-mediated MSN inhibition in the expression of AMPH-induced locomotor sensitization and CPP. These data show a requirement for PV+ interneurons of the NAc in behavioral responses to AMPH, and they raise the possibility that modulation of PV+ interneuron function may alter the development or expression of psychostimulant-induced behavioral adaptations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854794PMC
http://dx.doi.org/10.1038/npp.2017.178DOI Listing

Publication Analysis

Top Keywords

locomotor sensitization
12
nucleus accumbens
8
conditioned place
8
place preference
8
nac behavioral
8
behavioral adaptations
8
amph blocked
8
pv+ interneurons
8
interneurons nac
8
pv+ interneuron
8

Similar Publications

Objective: Acetylcholine modulates the activity of the direct and indirect pathways within the striatum through interaction with muscarinic M and M receptors. M receptors are uniquely positioned to regulate plasticity within the direct pathway and play a substantial role in reward and addiction-related behaviors. However, the role of M receptors on cholinergic neurons has been less explored.

View Article and Find Full Text PDF

Recent progress in psychiatric research has highlighted neuroinflammation in the pathophysiology of opioid use disorder (OUD), suggesting that heightened immune responses in the brain may exacerbate opioid-related mechanisms. However, the molecular mechanisms resulting from neuroinflammation that impact opioid-induced behaviors and transcriptional pathways remain poorly understood. In this study, we have begun to address this critical knowledge gap by exploring the intersection between neuroinflammation and exposure to the opioid heroin, utilizing lipopolysaccharide (LPS)-induced neuroinflammation, to investigate transcriptional changes in the nucleus accumbens (NAc), an essential region in the mesolimbic dopamine system that mediates opioid reward.

View Article and Find Full Text PDF

Mu-opioid receptor knockout on Foxp2-expressing neurons reduces aversion-resistant alcohol drinking.

Pharmacol Biochem Behav

December 2024

Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA. Electronic address:

Mu-opioid receptors (MORs) in the amygdala and striatum are important in addictive and rewarding behaviors. The transcription factor Foxp2 is a genetic marker of intercalated (ITC) cells in the amygdala and a subset of striatal medium spiny neurons (MSNs), both of which express MORs in wild-type mice and are neuronal subpopulations of potential relevance to alcohol-drinking behaviors. For the current series of studies, we characterized the behavior of mice with genetic deletion of the MOR gene Oprm1 in Foxp2-expressing neurons (Foxp2-Cre/Oprm1).

View Article and Find Full Text PDF
Article Synopsis
  • * In a study using EcoHIV mouse models, researchers found that HIV infection enhances cocaine locomotor sensitization and induces changes in astrocytes, specifically an increase in Sox9 expression in the NAc.
  • * Chemogenetic activation of NAc astrocytes showed potential in reversing the effects of EcoHIV on cocaine sensitization, suggesting that targeting these astrocytes could offer strategies for managing cocaine-related behaviors in PLWH.
View Article and Find Full Text PDF

Rationale: Tobacco monoamine oxidase (MAO) inhibitors have long been suspected of influencing tobacco dependence, but direct evidence of their effects has been difficult to obtain. Recently we have identified two new groups of monoamine oxidase inhibitors, hydroquinones and polyunsaturated fatty acids (linoleic and linolenic acid), abundant in tobacco smoke.

Objectives: To test, in relevant animal models, whether the combined effect of these inhibitors is sufficient to affect addictive responses to nicotine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!