Background: Most solid tumors contain inadequately oxygenated (i.e., hypoxic) regions, which tend to be more aggressive and treatment resistant. Hypoxia PET allows visualization of hypoxia and may enable treatment adaptation. However, hypoxia PET imaging is expensive, time-consuming and not widely available. We aimed to predict hypoxia levels in non-small cell lung cancer (NSCLC) using more easily available imaging modalities: FDG-PET/CT and dynamic contrast-enhanced CT (DCE-CT).

Material And Methods: For 34 NSCLC patients, included in two clinical trials, hypoxia HX4-PET/CT, planning FDG-PET/CT and DCE-CT scans were acquired before radiotherapy. Scans were non-rigidly registered to the planning CT. Tumor blood flow (BF) and blood volume (BV) were calculated by kinetic analysis of DCE-CT images. Within the gross tumor volume, independent clusters, i.e., supervoxels, were created based on FDG-PET/CT. For each supervoxel, tumor-to-background ratios (TBR) were calculated (median SUV/aorta SUV) for HX4-PET/CT and supervoxel features (median, SD, entropy) for the other modalities. Two random forest models (cross-validated: 10 folds, five repeats) were trained to predict the hypoxia TBR; one based on CT, FDG, BF and BV, and one with only CT and FDG features. Patients were split in a training (trial NCT01024829) and independent test set (trial NCT01210378). For each patient, predicted, and observed hypoxic volumes (HV) (TBR > 1.2) were compared.

Results: Fifteen patients (3291 supervoxels) were used for training and 19 patients (1502 supervoxels) for testing. The model with all features (RMSE training: 0.19 ± 0.01, test: 0.27) outperformed the model with only CT and FDG-PET features (RMSE training: 0.20 ± 0.01, test: 0.29). All tumors of the test set were correctly classified as normoxic or hypoxic (HV > 1 cm) by the best performing model.

Conclusions: We created a data-driven methodology to predict hypoxia levels and hypoxia spatial patterns using CT, FDG-PET and DCE-CT features in NSCLC. The model correctly classifies all tumors, and could therefore, aid tumor hypoxia classification and patient stratification.

Download full-text PDF

Source
http://dx.doi.org/10.1080/0284186X.2017.1349332DOI Listing

Publication Analysis

Top Keywords

predict hypoxia
12
hypoxia
10
tumor hypoxia
8
non-small cell
8
cell lung
8
lung cancer
8
dynamic contrast-enhanced
8
hypoxia pet
8
hypoxia levels
8
test set
8

Similar Publications

Background: At present, although some studies have offered certain insights into the genetic factors related to unruptured intracranial aneurysms (uIAs), the potential genetic targets associated with uIAs remain largely unknown. Thus, this research adopted Mendelian randomization (MR) analysis to study two genome-wide association studies on uIAs, aiming to determine the reliable genetic susceptibility and potential therapeutic targets for uIAs.

Methods: This study summarizes the data of expression quantitative trait loci (eQTL) as exposure data.

View Article and Find Full Text PDF

Introduction: Anzi Tiaochong Fang (ATF) is a traditional Chinese medicine (TCM) Fangji widely used to treat antiphospholipid syndrome-related recurrent pregnancy loss (APS-RPL). This study aimed to identify the quality markers and elucidate the mechanisms of ATF in treating APS-RPL.

Methods: Chemical, network pharmacology, and in vitro verification were employed to identify quality markers and mechanisms of ATF.

View Article and Find Full Text PDF

The antibiotic metronidazole (MNZ) has gained interest as a potential MRI contrast agent for imaging hypoxia. N-labeled MNZ can be efficiently hyperpolarized via SABRE-SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei), but the envisioned MRI approach requires that MNZ rapidly undergoes structural changes in hypoxic environments with significant N frequency differences manifested in its downstream metabolic products. We have performed NMR studies of the anticipated metabolic product amino-MNZ (despite anticipated stability concerns) accompanied by computational density functional theory (DFT) studies to predict the N chemical shifts of different relevant species.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor-1-alpha (HIF-1α) has the potential to predict the neoadjuvant chemotherapy (NAC) response in pancreatic ductal adenocarcinoma (PDAC). This study aimed to assess the relationship between the pathological response and intratumoral HIF-1α expression in patients with PDAC receiving NAC, and investigate the predictive value of contrast-enhanced computed tomography (CECT) features in HIF-1α expression.

Methods: A total of 58 patients from three centers with pathologically confirmed PDAC who underwent NAC followed by surgery were retrospectively enrolled in this study.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common malignancies. Hypoxia can promote the occurrence and development of CRC. However, how hypoxia regulates the CRC immune microenvironment needs to be further explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!