The cerebellum is thought to adapt movements to changes in the environment in order to update an implicit understanding of the association between our motor commands and their sensory consequences. This trial-by-trial motor recalibration in response to external perturbations is frequently impaired in people with cerebellar damage. In healthy people, adaptation to motor perturbations is also known to induce a form of sensory perceptual recalibration. For instance, hand-reaching adaptation tasks produce transient changes in the sense of hand position, and walking adaptation tasks can lead to changes in perceived leg speed. Though such motor adaptation tasks are heavily dependent on the cerebellum, it is not yet understood how the cerebellum is associated with these accompanying sensory recalibration processes. Here we asked if the cerebellum is required for the recalibration of leg-speed perception that normally occurs alongside locomotor adaptation, as well as how ataxia severity is related to sensorimotor recalibration deficits in patients with cerebellar damage. Cerebellar patients performed a speed-matching task to assess perception of leg speed before and after walking on a split-belt treadmill, which has two belts driving each leg at a different speed. Healthy participants update their perception of leg speed following split-belt walking such that the "fast" leg during adaptation feels slower afterwards, whereas cerebellar patients have significant deficits in this sensory perceptual recalibration. Furthermore, our analysis demonstrates that ataxia severity is a crucial factor for both the sensory and motor adaptation impairments that affect patients with cerebellar damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826770 | PMC |
http://dx.doi.org/10.1007/s12311-017-0879-0 | DOI Listing |
Front Physiol
January 2025
Human Physiology Section of the Department of Pathophysiology and Transplantation, Università Degli Studi, Milano, Italy.
Introduction: Prolonged or strenuous exercise leads to a temporary decrease in muscle function and performance, which interferes with activity of both prime movers and postural muscles. This effect of fatigue has been reported both for single segment movements and for locomotion. However, little is known regarding the effects of fatigue on anticipatory postural adjustments (APAs) during gait initiation, a task in which the control of focal movement should be strictly coupled to a feedforward control of posture.
View Article and Find Full Text PDFBallet shows numerous physiological benefits for dancers, with adaptations in posture, power, strength, stamina, and balance. The recent study from Simpkins and Yang (2024) showed 45% of ballet-trained dancers experienced a fall during a standing-slip perturbation, compared with 82.6% of non-dancers; along with shorter step latencies, durations, and speeds, which were accompanied by shorter electromyographic latencies in several leg muscles.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Comprehensive Center for Brain Health, Department of Neurology, Miller School of Medicine, University of Miami, Boca Raton, FL, USA.
Background: Declining physical functionality is an indicator of cognitive impairment, distinguishing normal cognition (NC) from dementia. Whether this extends to pre-dementia stages is unclear.
Objective: Assess physical performance patterns, evaluate relationships with imaging biomarkers, and identify specific measures distinguishing NC, subjective cognitive decline (SCD) and mild cognitive impairment (MCI).
J Biomech
January 2025
Stevens Institute of Technology, Hoboken, NJ, USA. Electronic address:
This study revealed how high school pitchers generated momenta during fastballs and changeups at a whole-body level. Baseball pitchers control ground reaction forces to generate whole-body momentum. Pitchers attempt to throw as fast and accurately as possible during fastballs but also need to throw off-speed pitches like changeups to deceive batters.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea.
The application of smart materials in robots has attracted considerable research attention. This study developed an inchworm robot that integrates smart materials and a bionic design, using the unique properties of magnetorheological elastomers (MREs) to improve the performance of robots in complex environments, as well as their adaptability and movement efficiency. This research stems from solving the problem of the insufficient adaptability of traditional bionic robots on different surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!