The pyrimidine based azo-linked Schiff base ligand, 5-benzoyl-1-((E)-(2-hydroxy-3-methoxy-5-((E)phenyldiazenyl)benzylidene)amino)-4-phenylpyrimidin-2(1H)-one (HL), and its transition metal (II) complexes were synthesized and defined by using H-NMR, C-NMR, Elemental analysis, FT-IR, MS, UV-vis, molar conductance, magnetic susceptibility and thermal analysis techniques. According to the conductance data obtained indicate all of the metal complexes have non-electrolytic nature. Square pyramidal geometry for Pd(II) and octahedral geometry for all the other complexes synthesized was concluded from the electronic absorption spectra and magnetic susceptibility measurements of the complexes. Investigation of the significant infrared bands of the active groups in the ligand and the solid complexes alludes that HL is coordinated to the metal ions ONO tridentate manner. Moreover, the absorption and emission properties of the azo-azomethine based ligand and its complexes were investigated. The results obtained show that fluorescence emissions of the ligand and its metal (II) complexes depend on the type of transition metal ions and the derivatives displayed moderate Stokes' shift values between 44 and 107 nm. All the compounds exhibited superb photostability. Further, antioxidant, antimicrobial and pBR322 plasmid DNA cleavage activities were investigated. All compounds showed good DPPH• (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity and complexes of [MnL]•HO and [NiL]•HO exhibited excellent metal chelating activity. All the compounds tested demonstrated two strand DNA cleavage activities.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-017-2166-3DOI Listing

Publication Analysis

Top Keywords

metal complexes
16
transition metal
12
complexes
9
schiff base
8
base ligand
8
complexes synthesized
8
magnetic susceptibility
8
metal ions
8
dna cleavage
8
cleavage activities
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!