Hypoxia-inducible ERO1α promotes cancer progression through modulation of integrin-β1 modification and signalling in HCT116 colorectal cancer cells.

Sci Rep

Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan.

Published: August 2017

Endoplasmic reticulum disulphide oxidase 1α (ERO1α) is an oxidase localized in the endoplasmic reticulum that plays a role in the formation of disulphide bonds of secreted and cell-surface proteins. We previously showed that ERO1α is overexpressed in various types of cancer and we further identified ERO1α expression as a novel factor related to poor prognosis in cancer. However, the biological functions of ERO1α in cancer remain unclear. Here, we investigated the cell biological roles of ERO1α in the human colon-cancer cell line HCT116. ERO1α knockout (KO) by using CRISPR/Cas9 resulted in decreased tumourigenicity in vivo and reduced cell proliferation only under hypoxia in vitro, which suggested that ERO1α promotes cancer progression specifically in a low-oxygen environment. Thus, we evaluated the function of ERO1α in cell proliferation under hypoxia, and found that under hypoxic conditions, ERO1α KO resulted in a contact-inhibited morphology and diminished motility of cells. We further showed that ERO1α KO induced a change in integrin-β1 glycosylation and thus an attenuation of cell-surface integrin-β1 expression, which resulted in the aforementioned phenotype. Our study has established a previously unrecognized link between ERO1α expression and integrin activation, and thus provides new evidence for the effectiveness of ERO1α-targeted therapy for colorectal carcinoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571208PMC
http://dx.doi.org/10.1038/s41598-017-09976-7DOI Listing

Publication Analysis

Top Keywords

ero1α
11
ero1α promotes
8
promotes cancer
8
cancer progression
8
endoplasmic reticulum
8
ero1α expression
8
cell proliferation
8
proliferation hypoxia
8
cancer
6
hypoxia-inducible ero1α
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!