We tested whether NF-B pathway is indispensable for the increase in expression of E3-ligases and unloading-induced muscle atrophy using IKKβ inhibitor IMD-0354. Three groups of rats were used: nontreated control (C), 3 days of unloading/hindlimb suspension with (HS+IMD) or without (HS) IMD-0354. Levels of IB were higher in HS+IMD (1.16-fold) and lower in HS (0.82-fold) when compared with C group. IMD-0354 treatment during unloading: had no effect on loss of muscle mass; increased mRNA levels of MuRF1 and MAFbx; increased levels of pFoxO3; and had no effect on levels of Bcl-3, p105, and p50 proteins. Our study for the first time showed that inhibiting IKK in vivo during 3-day unloading failed to diminish expression of ubiquitin ligases and prevent muscle atrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582258PMC
http://dx.doi.org/10.14814/phy2.13291DOI Listing

Publication Analysis

Top Keywords

muscle atrophy
12
expression ubiquitin
8
ubiquitin ligases
8
paradoxical ikkβ
4
ikkβ inhibition
4
inhibition expression
4
ligases unloading-induced
4
unloading-induced skeletal
4
muscle
4
skeletal muscle
4

Similar Publications

Background: The Weight-adjusted-waist index (WWI) has emerged as a predictive factor for a range of metabolic disorders. To date, the predictive value of the WWI in relation to sarcopenia in individuals with diabetics has not been extensively explored. This study aims to investigate the impact of the WWI on the prevalence of sarcopenia among patients with type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

This study aimed to investigate the role of myosteatosis, sarcopenia, and perioperative serum biomarkers as independent predictors of major complications within 180 days following radical cystectomy (RC) for muscle-invasive bladder cancer (MIBC). We retrospectively analyzed of 127 MIBC patients who underwent RC between 2013 and 2023 at a single institution. Preoperative body composition was assessed using CT scans at the L3 vertebral level to measure psoas muscle density (PMD), skeletal muscle density (SMD), axial muscle density (AMD), and muscle indices.

View Article and Find Full Text PDF

Purpose Of Review: Malnutrition is a significant comorbidity in Chronic Obstructive Pulmonary Disease (COPD), contributing to disease progression and reduced quality of life. This narrative review examines the role of nutritional therapy in the prevention and management of malnutrition in COPD, emphasizing evidence-based approaches and their clinical implications.

Recent Findings: COPD patients face increased metabolic demands, systemic inflammation, and reduced dietary intake, resulting in muscle wasting, sarcopenia, and cachexia.

View Article and Find Full Text PDF

The loss of skeletal muscle mass and strength, known as sarcopenia, is prevalent in older adults and linked to an increased risk of disability, frailty, and early mortality. Muscle health is crucial for the functionality and independence of older adults. As the aging population continuously grows, finding cost-effective strategies for preventing and treating sarcopenia is an important public health priority.

View Article and Find Full Text PDF

Sarcopenia, an age-related decline in skeletal muscle mass, strength, and function, is increasingly recognized as a significant condition in the aging population, particularly among those with cardiovascular diseases (CVD). This review provides a comprehensive synthesis of the interplay between sarcopenia and cardiogeriatrics, emphasizing shared mechanisms such as chronic low-grade inflammation (inflammaging), hormonal dysregulation, oxidative stress, and physical inactivity. Despite advancements in diagnostic frameworks, such as the EWGSOP2 and AWGS definitions, variability in criteria and assessment methods continues to challenge standardization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!