Molecular Regulation of Cellular Senescence by MicroRNAs: Implications in Cancer and Age-Related Diseases.

Int Rev Cell Mol Biol

Chromatin Structure and Cellular Senescence Research Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Université de Montréal, Montréal, QC, Canada. Electronic address:

Published: April 2018

AI Article Synopsis

  • Cellular senescence serves as a protective mechanism against cancer by causing normal cells to stop dividing in response to stressors like DNA damage or telomere shortening.
  • *It involves tumor suppressor pathways that must be deactivated for cancer cells to escape senescence and continue proliferating uncontrollably.
  • *MicroRNAs play a crucial role in regulating cellular senescence signals and the expression of these miRNAs is influenced by the senescence response, especially in relation to cancer and age-related diseases.

Article Abstract

Cellular senescence is a tumor suppressor response that acts as a barrier to cancer development and progression. In normal cells, diverse stimuli, including excessive mitogenic signaling, DNA damage or telomere shortening, trigger a senescence response characterized by stable growth arrest. Cellular senescence is orchestrated by tumor suppressor pathways, which have to be inactivated in order to impair the establishment of senescence and promote cancer. Consequently, by overcoming or bypassing this cellular response, cancer cells evade cell cycle checkpoint control leading to genomic instability and uncontrolled proliferation. MicroRNAs (MiRs) have emerged as essential factors contributing to or preventing cellular senescence. Here we detail the molecular mechanisms underlying the fine-tuning of cellular senescence signals by MiRs, and how the senescence response itself contributes to modulation of MiR expression, with a special focus on cancer and pathologies associated with aging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.ircmb.2017.04.001DOI Listing

Publication Analysis

Top Keywords

cellular senescence
20
senescence
8
tumor suppressor
8
senescence response
8
cellular
6
cancer
5
molecular regulation
4
regulation cellular
4
senescence micrornas
4
micrornas implications
4

Similar Publications

A Natural Autophagy Activator Castanea crenata Flower Alleviates Skeletal Muscle Ageing.

J Cachexia Sarcopenia Muscle

February 2025

Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.

Background: Sarcopenia, characterized by a gradual decline in skeletal muscle mass and function with age, significantly impacts both quality of life and mortality. Autophagy plays a crucial role in maintaining muscle health. There is growing interest in leveraging autophagy to mitigate muscle ageing effects.

View Article and Find Full Text PDF

PrP Glycoprotein Is Indispensable for Maintenance of Skeletal Muscle Homeostasis During Aging.

J Cachexia Sarcopenia Muscle

February 2025

Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.

Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.

Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).

View Article and Find Full Text PDF

Circadian factors CLOCK and BMAL1 promote nonhomologous end joining and antagonize cellular senescence.

Life Med

April 2024

Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

View Article and Find Full Text PDF

Cellular senescence induced by down-regulation of correlates with exon skipping of mitochondrial-related gene .

Life Med

April 2024

Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China.

As the most prevalent type of alternative splicing in animal cells, exon skipping plays an important role in expanding the diversity of transcriptome and proteome, thereby participating in the regulation of diverse physiological and pathological processes such as development, aging, and cancer. Cellular senescence serving as an anti-cancer mechanism could also contribute to individual aging. Although the dynamic changes of exon skipping during cellular senescence were revealed, its biological consequence and upstream regulator remain poorly understood.

View Article and Find Full Text PDF

DDO1002, an NRF2-KEAP1 inhibitor, improves hematopoietic stem cell aging and stress response.

Life Med

December 2024

Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.

Oxidative stress diminishes the functionality of hematopoietic stem cells (HSCs) as age advances, with heightened reactive oxygen species (ROS) levels exacerbating DNA damage, cellular senescence, and hematopoietic impairment. DDO1002, a potent inhibitor of the NRF2-KEAP1 pathway, modulates the expression of antioxidant genes. Yet, the extent to which it mitigates hematopoietic decline post-total body irradiation (TBI) or in the context of aging remains to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!