A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Perisaccadic visual perception. | LitMetric

Perisaccadic visual perception.

J Vis

Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.

Published: August 2017

Primates use frequent, rapid eye movements to sample their visual environment. This is a fruitful strategy to make the best use of the highly sensitive foveal part of the retina, but it requires neural mechanisms to bind the rapidly changing visual input into a single, stable percept. Studies investigating these neural mechanisms have typically assumed that perisaccadic perception in nonhuman primates matches that of humans. We tested this assumption by performing identical experiments in human and nonhuman primates. Our data confirm that perisaccadic visual perception of macaques and humans is qualitatively similar. Specifically, we found a reduction in detectability and mislocalization of targets presented at the time of saccades. We also found substantial differences between human and nonhuman primates. Notably, in nonhuman primates, localization that requires knowledge of eye position was less precise, nonhuman primates detected fewer perisaccadic stimuli, and perisaccadic compression was not towards the saccade target. The qualitative similarities between species support the view that the nonhuman primate is ideally suited to study aspects of brain function-such as those relying on foveal vision-that are uniquely developed in primates. The quantitative differences, however, demonstrate the need for a reassessment of the models purportedly linking neural response changes at the time of saccades with the behavioral phenomena of perisaccadic reduction of detectability and mislocalization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097583PMC
http://dx.doi.org/10.1167/17.9.16DOI Listing

Publication Analysis

Top Keywords

nonhuman primates
20
perisaccadic visual
8
visual perception
8
neural mechanisms
8
human nonhuman
8
reduction detectability
8
detectability mislocalization
8
time saccades
8
primates
7
perisaccadic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!