Gait adaptability is essential for fall avoidance during locomotion. It requires the ability to rapidly inhibit original motor planning, select and execute alternative motor commands, while also maintaining the stability of locomotion. This study investigated the aging effect on gait adaptability and dynamic stability control during a visually perturbed gait initiation task. A novel approach was used such that the anticipatory postural adjustment (APA) during gait initiation were used to trigger the unpredictable relocation of a foot-size stepping target. Participants (10 young adults and 10 older adults) completed visually perturbed gait initiation in three adjustment timing conditions (early, intermediate, late; all extracted from the stereotypical APA pattern) and two adjustment direction conditions (medial, lateral). Stepping accuracy, foot rotation at landing, and Margin of Dynamic Stability (MDS) were analyzed and compared across test conditions and groups using a linear mixed model. Stepping accuracy decreased as a function of adjustment timing as well as stepping direction, with older subjects exhibited a significantly greater undershoot in foot placement to late lateral stepping. Late adjustment also elicited a reaching-like movement (i.e. foot rotation prior to landing in order to step on the target), regardless of stepping direction. MDS measures in the medial-lateral and anterior-posterior direction revealed both young and older adults exhibited reduced stability in the adjustment step and subsequent steps. However, young adults returned to stable gait faster than older adults. These findings could be useful for future study of screening deficits in gait adaptability and preventing falls.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2017.08.013 | DOI Listing |
Nutrients
December 2024
Division of General Medicine, Department of Internal Medicine, Hyogo Medical University, Nishinomiya 663-8501, Hyogo, Japan.
Background/objectives: Oral frailty, first identified in Japan in 2014, refers to a state between healthy oral function and severe decline, marked by minor issues, such as tooth loss and chewing difficulties. The oral frailty five-item checklist (OF-5) enables non-dental professionals to evaluate oral frailty using five key indicators: remaining teeth count, chewing difficulties, swallowing difficulties, dry mouth, and articulatory oral skills. Limited studies exist.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Street, 61-138 Poznan, Poland.
This paper is dedicated to the analysis of a foot prosthesis optimization process, with a particular focus on the application of optimization algorithms and unconventional materials, such as auxetic materials. The study aims to enhance prosthesis performance by minimizing the difference between the ground reaction force generated by the prosthetic foot and that of a natural limb. In the initial part of the study, the basic topics concerning the parameterization of the foot prosthesis geometry and the preparation of a finite element model for human gait are discussed.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy.
: Gait analysis, traditionally performed with lab-based optical motion capture systems, offers high accuracy but is costly and impractical for real-world use. Wearable technologies, especially inertial measurement units (IMUs), enable portable and accessible assessments outside the lab, though challenges with sensor placement, signal selection, and algorithm design can affect accuracy. This systematic review aims to bridge the benchmarking gap between IMU-based and traditional systems, validating the use of wearable inertial systems for gait analysis.
View Article and Find Full Text PDFGait Posture
December 2024
Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Informatics, UMC-Location AMC, University of Amsterdam, Amsterdam, the Netherlands. Electronic address:
Background: Measuring plantar pressure distribution is critical for understanding foot-ground interactions, providing valuable insights for diagnosing and managing various health conditions. Since its initial studies in 1984, this field has garnered increasing attention within healthcare and medicine due to its broad applications across clinical settings.
Research Question: How does measuring plantar pressure distribution affect healthcare outcomes across different age groups and health conditions?
Methods: This review thoroughly explores the literature concerning plantar pressure distribution, focusing on studies conducted from 1984 onwards.
Scand J Med Sci Sports
January 2025
Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
Measuring lower extremity impact acceleration is a common strategy to identify runners with increased injury risk. However, existing axial peak tibial acceleration (PTA) thresholds for determining high-impact runners typically rely on small samples or fixed running speeds. This study aimed to describe the distribution of axial PTA among runners at their preferred running speed, determine an appropriate adjustment for investigating impact magnitude at different speeds, and compare biomechanics between runners classified by impact magnitude.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!