Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mechanochemical destruction has been proposed as a promising, non-combustion technology for the disposal of toxic, halogenated, organic pollutants. In the study presented, additives including Fe, Zn, Fe-Zn bimetal, CaO and FeO were tested for their effectiveness to remove DDTs by MC. The results showed that Fe-Zn bimetal was the most efficient additive, with 98% of DDTs removed after 4h. The Fe-Zn mass ratio was optimized to avoid possible spontaneous combustion of the ground sample during subsample collection. Inorganic water-soluble chloride in the ground sample increased by 91% after 4h of grinding, which indicated dechlorination during destruction of DDTs. In addition, relationships were established between the rate constant and the rotation speed or the charge ratio. Discrete Element Method (DEM) modeling was used to simulate the motion of the grinding ball and calculate both total impact energy and normal impact energy. The latter expressed a stronger, linear correlation with the rate constant. Therefore, normal impact energy is proposed to be the main driving force in the MC destruction of DDTs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2017.08.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!