Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nitrogen (N) and phosphorus (P) in topsoils are critical for plant nutrition. Relatively little is known about the spatial patterns of N and P in the organic layer of mountainous landscapes. Therefore, the spatial distributions of N and P in both the organic layer and the A horizon were analyzed using a light detection and ranging (LiDAR) digital elevation model and vegetation metrics. The objective of the study was to analyze the effect of vegetation and topography on the spatial patterns of N and P in a small watershed covered by forest in South Korea. Soil samples were collected using the conditioned latin hypercube method. LiDAR vegetation metrics, the normalized difference vegetation index (NDVI), and terrain parameters were derived as predictors. Spatial explicit predictions of N/P ratios were obtained using a random forest with uncertainty analysis. We tested different strategies of model validation (repeated 2-fold to 20-fold and leave-one-out cross validation). Repeated 10-fold cross validation was selected for model validation due to the comparatively high accuracy and low variance of prediction. Surface curvature was the best predictor of P contents in the organic layer and in the A horizon, while LiDAR vegetation metrics and NDVI were important predictors of N in the organic layer. N/P ratios increased with surface curvature and were higher on the convex upper slope than on the concave lower slope. This was due to P enrichment of the soil on the lower slope and a more even spatial distribution of N. Our digital soil maps showed that the topsoils on the upper slopes contained relatively little P. These findings are critical for understanding N and P dynamics in mountainous ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570292 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183205 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!