Homochirality in peptides is crucial in sustaining "like-like" intermolecular interactions that allow the formation of assemblies and aggregates and is ultimately responsible for the resulting material properties. With the help of a series of stereoisomers of the tripeptide F-F-L, we demonstrate the critical role that peptide stereochemistry plays in the self-assembly of peptides, guided by molecular recognition, and for self-sorting. Homochiral self-assemblies are thermally and mechanically more robust compared to heterochiral self-assemblies. Morphological studies of the multicomponent peptide systems showed that aggregates formed from homochiral peptides possessed a uniform nano-fibrous structure, whereas heterochiral systems resulted in self-sorted systems with a heterogeneous morphology. In essence, homochiral peptides form the stronger aggregates, which may be one of reasons why homochirality is preferred in living systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201706162 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!