The intercalation of hydroxide ions (OH) into graphite formed graphite intercalation compounds (GICs) in high ionic strength solutions. GICs of solvated OH anions with two water molecules (OH·2HO) in alkaline aqueous solutions and GICs of only OH anions in a molten NaOH-KOH salt solution were electrochemically synthesized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cc04331g | DOI Listing |
J Colloid Interface Sci
January 2025
Faculty of Metallurgical and Energy Engineering, Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 China. Electronic address:
High-value recycling of photovoltaic waste graphite (WG) is an effective path to achieve "carbon neutrality". However, the current most adopted methods are landfilling, incineration and leaching, which can lead to undesirable environmental contamination and waste of resources. Here, an energy-efficient and high-value flash recycling strategy is developed in which photovoltaic WG is converted to high-capacity and high-rate graphite anode for lithium-ion batteries (LIBs) in milliseconds.
View Article and Find Full Text PDFACS Nano
January 2025
The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan.
The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, P.R. China.
Graphdiyne (GDY), which is composed of benzene rings and acetylene linkage units, is a new allotrope of carbon material. In particular, the large triangular pores of GDY, with a diameter of 5.4 Å, theoretically predict a higher lithium embedding density than traditional graphite anodes, making it a promising candidate for energy storage materials in lithium-ion (Li-ion) batteries.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for Electron Microscopy, South China University of Technology, Guangzhou 510640, China.
Poly(triazine imide) (PTI) materials, a class of layered graphitic carbon nitrides, have garnered significant attention for their unique electronic, thermal, and catalytic properties. These properties can be adjusted through postsynthesis treatments. However, the influence of these treatments on the layer stacking modes and local structures within PTI remains largely unexplored.
View Article and Find Full Text PDFNat Commun
January 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China.
With the rapid development of graphene industry, low-cost sustainable synthesis of monolayer graphene oxide (GO) has become more and more important for many applications such as water desalination, thermal management, energy storage and functional composites. Compared to the conventional chemical oxidation methods, water electrolytic oxidation of graphite-intercalation-compound (GIC) shows significant advantages in environmental-friendliness, safety and efficiency, but suffers from non-uniform oxidation, typically ~50 wt.% yield with ~50% monolayers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!