The self-propagation of misfolded conformations of tau underlies neurodegenerative diseases, including Alzheimer's. There is considerable interest in discovering the minimal sequence and active conformational nucleus that defines this self-propagating event. The microtubule-binding region, spanning residues 244-372, reproduces much of the aggregation behaviour of tau in cells and animal models. Further dissection of the amyloid-forming region to a hexapeptide from the third microtubule-binding repeat resulted in a peptide that rapidly forms fibrils in vitro. We show that this peptide lacks the ability to seed aggregation of tau in cells. However, as the hexapeptide is gradually extended to 31 residues, the peptides aggregate more slowly and gain potent activity to induce aggregation of tau in cells. X-ray fibre diffraction, hydrogen-deuterium exchange and solid-state NMR studies map the beta-forming region to a 25-residue sequence. Thus, the nucleus for self-propagating aggregation of tau in cells is packaged in a remarkably small peptide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5759337PMC
http://dx.doi.org/10.1038/nchem.2754DOI Listing

Publication Analysis

Top Keywords

tau cells
16
aggregation tau
12
microtubule-binding region
8
aggregation
5
cells
5
tau
5
31-residue peptide
4
peptide induces
4
induces aggregation
4
aggregation tau's
4

Similar Publications

Neurons located in the layer II of the entorhinal cortex (ECII) are the primary site of pathological tau accumulation and neurodegeneration at preclinical stages of Alzheimer's disease (AD). Exploring the alterations that underlie the early degeneration of these cells is essential to develop therapies that delay disease onset. Here we performed cell-type specific profiling of the EC at the onset of human AD neuropathology.

View Article and Find Full Text PDF

The role of immune cells in neurodegeneration remains incompletely understood. Our recent study revealed the presence of mucosal-associated invariant T (MAIT) cells in the meninges, where they express antioxidant molecules to maintain meningeal barrier integrity. Accumulation of misfolded tau proteins are a hallmark of neurodegenerative diseases.

View Article and Find Full Text PDF

Microglial activation states and their implications for Alzheimer's Disease.

J Prev Alzheimers Dis

January 2025

School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia. Electronic address:

Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Schisandra chinensis (Turcz.) Baill (S. chinensis), first recorded in Shennong's Classic of the Materia Medica, is described as a "top grade medicine".

View Article and Find Full Text PDF

The development of potent glycogen synthase kinase-3β (GSK-3β) inhibitor has been increasingly recognized as the candidate treatment against the multifactorial pathogenic mechanism of Alzheimer's disease (AD). This study prepared various new pyrrolo[2,3-b]pyridine derivatives, evaluated the anti-AD activities and detected the security based on the structure-guided rational design. Our results indicated that many pyrrolo[2,3-b]pyridine derivatives had strong GSK-3β inhibitory activities, particularly compounds 41, 46 and 54, with the half maximal inhibitory concentrations (IC) of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!