Random Forest.

J Insur Med

Published: January 2019

For the task of analyzing survival data to derive risk factors associated with mortality, physicians, researchers, and biostatisticians have typically relied on certain types of regression techniques, most notably the Cox model. With the advent of more widely distributed computing power, methods which require more complex mathematics have become increasingly common. Particularly in this era of "big data" and machine learning, survival analysis has become methodologically broader. This paper aims to explore one technique known as Random Forest. The Random Forest technique is a regression tree technique which uses bootstrap aggregation and randomization of predictors to achieve a high degree of predictive accuracy. The various input parameters of the random forest are explored. Colon cancer data (n = 66,807) from the SEER database is then used to construct both a Cox model and a random forest model to determine how well the models perform on the same data. Both models perform well, achieving a concordance error rate of approximately 18%.

Download full-text PDF

Source
http://dx.doi.org/10.17849/insm-47-01-31-39.1DOI Listing

Publication Analysis

Top Keywords

random forest
20
cox model
8
models perform
8
random
5
forest task
4
task analyzing
4
analyzing survival
4
survival data
4
data derive
4
derive risk
4

Similar Publications

Background: Despite the adverse health outcomes associated with longer duration diarrhea (LDD), there are currently no clinical decision tools for timely identification and better management of children with increased risk. This study utilizes machine learning (ML) to derive and validate a predictive model for LDD among children presenting with diarrhea to health facilities.

Methods: LDD was defined as a diarrhea episode lasting ≥ 7 days.

View Article and Find Full Text PDF

Development of a disease diagnostic model to predict the occurrence of central precocious puberty of female.

J Pediatr Endocrinol Metab

January 2025

Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.

Objectives: To develop a clinical model for predicting the occurrence of Central Precocious Puberty based on the breast development outcomes in chinese girls.

Methods: This is a retrospective study, which included a total of 1,001 girls aged 6-9 years old who visited the outpatient clinic of Beijing Children's Hospital from January 2017 to October 2022 for "breast development". Participants were categorized into pubertal development (PD) cohort and simple premature breast development (PT) according to the criteria, and information was collected and tested for relevant indicators.

View Article and Find Full Text PDF

Preeclampsia (PE) is a major pregnancy-specific cardiovascular complication posing latent life-threatening risks to mothers and neonates. The contribution of immune dysregulation to PE is not fully understood, highlighting the need to explore molecular markers and their relationship with immune infiltration to potentially inform therapeutic strategies. We used bioinformatics tools to analyze gene expression data from the Gene Expression Omnibus (GEO) database using the GEOquery package in R.

View Article and Find Full Text PDF

Genomic prediction applies to any agro- or ecologically relevant traits, with distinct ontologies and genetic architectures. Selecting the most appropriate model for the distribution of genetic effects and their associated allele frequencies in the training population is crucial. Linear regression models are often preferred for genomic prediction.

View Article and Find Full Text PDF

Addressing the issues of inadequate information exchange among subsequences in the operational time series of water injection pumps, leading to low accuracy and high false alarm rates in anomaly detection, this paper proposes a multidimensional time series anomaly detection method for water injection pump operations, leveraging Long Short-Term Memory Autoencoder augmented with Attention Mechanism (LSTMA-AE) and mechanistic constraints. The LSTMA-AE framework encompasses three primary modules: a Time Feature Extraction Module (Encoder), an Attention Layer, and a Data Reconstruction Module (Decoder). The Encoder captures temporal dependencies and features within the input sequences, mapping the input data into a higher-dimensional space.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!