Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A metal-organic approach has been employed for the preparation of anisotropic CuO nanoparticles. These nanostructures have been characterized by transmission and high resolution transmission electron microscopy, field-emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The CuO nanoparticles have been deposited as gas-sensitive layers on miniaturized silicon devices. At an operating temperature of 210 °C, the sensors present an optimum response toward carbon monoxide correlated with a fast response (Rn) and short recovery time. A high sensitivity to CO (Rn≈150 %, 100 ppm CO, RH 50 %) is achieved. These CuO nanoparticles serve as a very promising sensing layer for the fabrication of selective CO gas sensors working at a low temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201700693 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!