Doping Phosphorene with Holes and Electrons through Molecular Charge Transfer.

Chemphyschem

New Chemistry Unit, Theoretical Sciences Unit, International Centre for Materials Science and Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalor, 560064, India.

Published: November 2017

An important aspect of phosphorene, the novel two-dimensional semiconductor, is whether holes and electrons can both be doped in this material. Some reports found that only electrons can be preferentially doped into phosphorene. There are some theoretical calculations showing charge-transfer interaction with both tetrathiafulvalene (TTF) and tetracyanoethylene (TCNE). We have carried out an investigation of chemical doping of phosphorene by a variety of electron donor and acceptor molecules, employing both experiment and theory, Raman scattering being a crucial aspect of the study. We find that both electron acceptors and donors interact with phosphorene by charge-transfer, with the acceptors having more marked effects. All the three Raman bands of phosphorene soften and exhibit band broadening on interaction with both donor and acceptor molecules. First-principles calculations establish the occurrence of charge-transfer between phosphorene with donors as well as acceptors. The absence of electron-hole asymmetry is noteworthy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201700789DOI Listing

Publication Analysis

Top Keywords

doping phosphorene
8
holes electrons
8
donor acceptor
8
acceptor molecules
8
phosphorene
6
phosphorene holes
4
electrons molecular
4
molecular charge
4
charge transfer
4
transfer aspect
4

Similar Publications

Few-Layered Black Phosphorene as Hole Transport Layer for Novel All-Inorganic Perovskite Solar Cells.

Materials (Basel)

January 2025

Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

The CsPbBr perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr perovskite (FTO/c-TiO/m-TiO/CsPbBr/BP/C) solar cell.

View Article and Find Full Text PDF

As a new member of two-dimensional (2D) phosphorene, 2D layered violet phosphorus (VP) has unique optoelectronic properties and good environmental stability, showing its huge advantages in optoelectronic applications. In this paper, the ultrafast nonlinear optical (NLO) properties of layered VP nanosheets at 1 µm band were explored, which exhibit an obvious saturable absorption response with a modulation depth of ∼1.97%.

View Article and Find Full Text PDF

Two-dimensional materials provide a rich platform demonstrating quantum effects, and the process of electron-hole recombination occurring in them has significant applications in the fields of the photocatalytic and optoelectronic community. Here, we present nonadiabatic coupling-induced quantum coherence and quantum beats in Al-doped blue phosphorene. The work improves our understanding and utilization of nonadiabatic coupling in low-dimensional materials from a new perspective.

View Article and Find Full Text PDF

Highly sensitive sensing of CO and HF gases by monolayer CuCl.

RSC Adv

May 2024

State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen Shenzhen 518055 P. R. China.

Using a first-principles approach, the adsorption characteristics of CO and HF on a CuCl monolayer (ML) are studied with Grimme-scheme DFT-D2 for accurate description of the long-range (van der Waals) interactions. According to our study, CO gas molecules undergo chemisorption and HF gas molecules show a physisorption phenomenon on the CuCl monolayer. The adsorption energy for CO is -1.

View Article and Find Full Text PDF

Electrostatic Gating of Phosphorene Polymorphs.

J Phys Chem C Nanomater Interfaces

February 2024

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona,C/Martí i Franquès 1, 08028 Barcelona, Spain.

The ability to directly monitor the states of electrons in modern field-effect transistors (FETs) could transform our understanding of the physics and improve the function of related devices. In particular, phosphorene allotropes present a fertile landscape for the development of high-performance FETs. Using density functional theory-based methods, we have systematically investigated the influence of electrostatic gating on the structures, stabilities, and fundamental electronic properties of pristine and carbon-doped monolayer (bilayer) phosphorene allotropes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!