A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkaoj8mfhuhh3n0kcub66jqjcve9mrh20): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Traction Force Measurement Using Deformable Microposts. | LitMetric

Traction Force Measurement Using Deformable Microposts.

Methods Mol Biol

Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA.

Published: May 2018

Recent findings suggest that mechanical forces strongly influence wound repair and fibrosis across multiple organ systems. Traction force is vital to the characterization of cellular responses to mechanical stimuli. Using hydrogel-based traction force microscopy, a FRET-based tension sensor, or microengineered cantilevers, the magnitude of traction forces can be measured. Here, we describe a traction force measurement methodology using a dense array of elastomeric microposts. This platform can be used to measure the traction force of a single cell or a colony of cells with or without geometric confinement.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7113-8_16DOI Listing

Publication Analysis

Top Keywords

traction force
20
force measurement
8
traction
6
measurement deformable
4
deformable microposts
4
microposts findings
4
findings mechanical
4
mechanical forces
4
forces influence
4
influence wound
4

Similar Publications

Introduction: Maintaining cognitive performance during sleep deprivation is of vital importance in many professions, especially in high-risk professions like the military. It has long been known that sleep deprivation diminishes cognitive performance. To mitigate the negative effects on cognitive performance during crucial military tasks, new interventions are necessary.

View Article and Find Full Text PDF

Soft micropillar arrays enable detailed studies of cellular mechanotransduction and biomechanics using traditional beam-bending models. However, they often rely on simplified assumptions, leading to significant errors in force estimation. We present MechanoBioCAD (MBC), a finite element method (FEM)-based tool designed specifically for micropillar research and error estimation.

View Article and Find Full Text PDF

PIEZO1-dependent mode switch of neuronal migration in heterogeneous microenvironments in the developing brain.

Cell Rep

March 2025

Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan. Electronic address:

The migration of newborn neurons is essential for brain morphogenesis and circuit formation, yet controversy exists regarding how neurons generate the driving force against strong mechanical stresses in crowded neural tissues. We found that cerebellar granule neurons employ a mechanosensing mechanism to switch the driving forces to maneuver in irregular brain tissue. In two-dimensional (2D) cultures, actomyosin is enriched in the leading process, exerting traction force on the cell soma.

View Article and Find Full Text PDF

Objectives: In view of the gradual rejuvenation and acceleration of lumbar spondylosis, a wearable powered lumbar exoskeleton based on a 6-SPU/SP parallel mechanism is designed based on the rehabilitation treatment method of lumbar forward flexion/extension, left/right lateral flexion and rotation.

Methods: First, the changes in human lumbar muscles are analyzed based on human biomechanics, and then the prototype design of the powered lumbar exoskeleton is implemented, including the mechanical mechanism design, and hardware module design. Finally, the simulation experiment of muscle force and output sensitivity test in the resistive mode are conducted.

View Article and Find Full Text PDF

Tunable Integrin-Ligand Coupling Strength Modulates Cellular Adaptive Mechanosensing.

Nano Lett

March 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.

Cells sense and respond to the matrix by exerting traction force through binding of integrins to an integrin-specific ligand. Here, Arg-Gly-Asp (RGD) peptide is covalently conjugated to the double-stranded DNA (dsDNA) and stem-loop DNA (slDNA) tethers with a tension tolerance of 43pN and immobilized on a PEG substrate. Unlike dsDNA, which is ruptured under high tension, leading to the removal of RGD, slDNA remains bound even when ruptured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!