Heavy metal (HM) exposure has been associated with human health diseases like cancer, kidney and liver damage, neurological disorders, motor skills, low bone density and learning problems. With the beginning of the industrialization, the heavy metals in high concentration contribute to putting on the risk the humans in the vicinity. Our study site is located in Cataño, Puerto Rico. This is a highly industrialized area. It is surrounded by a recreational park, a rum distillery, two thermoelectric factories, and was impacted by CAPECO (oil refinery) explosion in 2009. Las Cucharillas marsh is part of The San Juan Bay Estuary System, considered as a critical wildlife area. The mangrove marsh has three of the four mangrove species found in PR and This study was aimed at seven different heavy metals: Arsenic (As), Cadmium (Cd), Chromium (Cr), Lead (Pb), Zinc (Zn), Mercury (Hg) and Copper (Cu). These metals at high concentrations are of human health concern due to their toxicity, persistence, bioaccumulative and bio magnification potentials. Contamination of surface sediments with HM affects the food chain, starting with marine organisms up to humans. The people who live near the contaminated area and the local fishermen are at high risk of exposure. Studies reveal that certain microorganisms can resist the toxicity of heavy metals even at high concentrations. Our study pretends to exploit the sensitive nature of some bacteria to HM and use them as bioindicators. The objective of this research is to assess the bacterial community on the mangrove marsh, identify these bacteria and correlate bacterial species with the type and concentration of the metals found on the site. Our preliminary results with the BIOLOG® identification were five bacteria that are: and This study will continue with an assessment of the exposure of different concentrations of heavy metals to our identified bacteria and underlying the mechanisms of degradation, magnification and or bioconcentration of these heavy metals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565159PMC
http://dx.doi.org/10.11594/jtls.05.03.01DOI Listing

Publication Analysis

Top Keywords

heavy metals
20
human health
12
metals high
12
heavy metal
8
mangrove marsh
8
high concentrations
8
heavy
7
metals
7
bacteria
5
bacteria potential
4

Similar Publications

Background: Previous research has demonstrated that exposure to individual heavy metals elevates the incidence rate of congenital heart defects (CHDs). However, there is a paucity of data concerning the relationship between combined exposure to multiple heavy metals and the occurrence of CHDs. This study seeks to investigate the association between combined heavy metal exposure in pregnant women and the incidence of CHDs in their offspring in Lanzhou, China.

View Article and Find Full Text PDF

Studies on the nutritional strength of various hyacinth bean varieties for their potential utilization as promising legume.

J Food Sci Technol

January 2025

Grain Science and Technology Division, Defence Food Research Laboratory, Mysore, Karnataka 570011 India.

This study aimed to compare thirteen different varieties of hyacinth beans analyzedfor their nutritional and antinutritional constituents. The study classified HA-3, HA-4, and Kadale Avare as Lignosus varieties, while the remaining varieties Arka, Pusa, CO, and NS, were classified as Typicus. The protein content ranged from 19.

View Article and Find Full Text PDF

Background: Salt usage patterns have been associated with a risk of multiple diseases; however, their relationship with heavy metal exposure has not been extensively studied.

Methods: This study analyzed survey data from 11,574 NHANES participants. Weighted linear regression models were used to examine the relationship between the type of salt used by participants, the frequency of adding salt at the table, and the frequency of adding regular or seasoned salt to cooking or food preparation, and urinary concentrations of 10 heavy metals.

View Article and Find Full Text PDF

elevated concentrations of soil-bound heavy metals and magnetic particles in a typical urban plateau lake wetland, China.

Heliyon

January 2025

Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China.

Vegetation change significantly altered the hydrological processes and soil erosion within riparian ecosystems. It is unclear how change in managed vegetation types affect the geochemical behavior of heavy metals (HMs) and magnetic particles in karst riparian areas. Two soil depths of 0-20 cm and 20-40 cm were taken in alien species (), native species and in a typical urban plateau Lake wetland, Caohai lake, China.

View Article and Find Full Text PDF

From contamination to detection: The growing threat of heavy metals.

Heliyon

January 2025

Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo, 11835, Egypt.

Heavy metals like lead, mercury, cadmium, and arsenic are environmental pollutants that accumulate in ecosystems and pose significant health risks to humans and wildlife, primarily through food chain contamination where plants absorb heavy metals, affecting their growth and threatening consumer health. Cognitive and cardiovascular functions are particularly affected by exposure to heavy metals even at low concentrations through the induction of oxidative stress. Various analytical techniques are used in measuring heavy metals in different environmental and biological samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!