Chordomas are rare, slowly growing tumors with high medical need, arising in the axial skeleton from notochord remnants. The transcription factor "brachyury" represents a distinctive molecular marker and a key oncogenic driver of chordomas. Tyrosine kinase receptors are also expressed, but so far kinase inhibitors have not shown clear clinical efficacy in chordoma patients. The need for effective therapies is extremely high, but the paucity of established chordoma cell lines has limited preclinical research. Here we describe the isolation of the new Chor-IN-1 cell line from a recurrent sacral chordoma and its characterization as compared to other chordoma cell lines. Chor-IN-1 displays genomic identity to the tumor of origin and has morphological features, growth characteristics and chromosomal abnormalities typical of chordoma, with expression of brachyury and other relevant biomarkers. Chor-IN-1 gene variants, copy number alterations and kinome gene expression were analyzed in comparison to other four chordoma cell lines, generating large scale DNA and mRNA genomic data that can be exploited for the identification of novel pharmacological targets and candidate predictive biomarkers of drug sensitivity in chordoma. The establishment of this new, well characterized chordoma cell line provides a useful tool for the identification of drugs active in chordoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5569021PMC
http://dx.doi.org/10.1038/s41598-017-10044-3DOI Listing

Publication Analysis

Top Keywords

chordoma cell
20
cell lines
12
chordoma
10
cell
6
establishment genomic
4
genomic characterization
4
characterization chordoma
4
chor-in-1
4
cell chor-in-1
4
chor-in-1 chordomas
4

Similar Publications

Purpose: Chordoma, a rare malignancy of the axial skeleton and skull base, presents significant therapeutic challenges due to the high rates of tumor recurrence and resistance. While surgical resection and radiation therapy remain the gold standard of treatment, the lack of additional treatment options necessitates the exploration of novel therapies. Combinatorial therapies hold significant potential in shaping patient prognosis.

View Article and Find Full Text PDF

Background And Aims: Chordomas are rare notochordal tumors. They are suitable candidates for squash smear cytology (SSC) owing to their gelatinous consistency and destructive nature. SSC is an important tool for making a quick intra-operative preliminary diagnosis and taking real-time surgical and further management decisions.

View Article and Find Full Text PDF

Background: With increased early detection efforts, surgery for early-stage lung cancer is expected to rise. Pafolacianine is the first FDA approved targeted optical imaging agent indicated as an adjunct for intraoperative identification of malignant and nonmalignant pulmonary lesions in adult patients with known or suspected cancer in the lung.

Methods: This is a retrospective review of the malignant and nonmalignant lesions identified by pafolacianine with intraoperative molecular imaging (IMI) in the multi-center Phase 2 and Phase 3 ELUCIDATE clinical trials.

View Article and Find Full Text PDF

Enhancing Chordoma Radiotherapy: Ta@PVP Nanoparticles as Potent Radiosensitizers.

ACS Appl Mater Interfaces

December 2024

CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.

Surgical resection and high-dose radiotherapy constitute the standard therapeutic approaches for chordoma. However, the efficacy of radiotherapy is often compromised by the tumor microenvironment's hypoxic conditions, which confer radiation resistance, and by the potential damage to adjacent spinal cord and neural structures from elevated radiation doses. To address these challenges, we employed high biocompatible poly(vinylpyrrolidone)-modified tantalum nanoparticles (Ta@PVP NPs) as a potent radiosensitizer to augment the radiotherapy sensitivity of chordoma.

View Article and Find Full Text PDF

Purpose:  Chordomas are malignant tumors of the axial spine and skull base, and they are notorious for their poor treatment response. Differentiating these tumors from comparatively less malignant chondrosarcomas is crucial for treatment and prognostication. Both tumor types differ in their developmental origin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!