Distinct coordinate systems for adaptations of movement direction and extent.

J Neurophysiol

Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia; and

Published: November 2017

Learned compensations for perturbed visual feedback of movement extent and direction generalize differently to unpracticed movement directions, which suggests different underlying neural mechanisms. Here we investigated whether gain and rotation adaptations are consistent with representation in different coordinate systems. Subjects performed a force-aiming task with the wrist and learned different gains or rotations for different force directions. Generalization was tested without visual feedback for the same extrinsic directions but with the forearm in a different pronation-supination orientation. When the change in forearm orientation caused the adapted visuomotor map to conflict in extrinsic and joint-based coordinates, rotation generalization occurred in extrinsic coordinates but with reduced magnitude. In contrast, gain generalization appeared reduced and phase shifted. When the forearm was rotated further, such that all imposed perturbations aligned in both joint-based and extrinsic coordinates in both postures, rotation generalization was further reduced, whereas there was neither reduction nor phase shift in the pattern of extent generalization. These results show that rotation generalization was expressed in extrinsic coordinates, and that generalization magnitude was modulated by posture. In contrast, gain generalization appeared to depend on target direction defined by an integrated combination of extrinsic and joint-based coordinates and was not reduced substantially by posture changes alone. Although the quality of the model fit underlying our interpretation prevents us from making strong conclusions, the data suggest that adaptations of movement direction and extent are represented according to distinct coordinate systems. Visuomotor gain and rotation adaptations generalize differently to novel movement directions, which suggests different neural mechanisms. When extrinsic and joint-based coordinates are effectively dissociated in an isometric aiming task, we find that they also generalize in different coordinate systems. Specifically, rotation generalized in extrinsic coordinates and decayed as posture departed from that adopted during adaptation. In contrast, gain generalization was expressed according to mixed extrinsic/joint-based coordinates and was not substantially reduced by postural changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672543PMC
http://dx.doi.org/10.1152/jn.00326.2016DOI Listing

Publication Analysis

Top Keywords

coordinate systems
16
extrinsic coordinates
16
extrinsic joint-based
12
joint-based coordinates
12
rotation generalization
12
coordinates reduced
12
contrast gain
12
gain generalization
12
generalization
9
distinct coordinate
8

Similar Publications

Food safety challenges, such as mycotoxin contamination, pose severe threats to public health, agricultural productivity, and economic development across Sub-Saharan African countries and beyond. This study investigated whether government policies related to food safety adequately address these concerns, using Malawi as a case study. We systematically reviewed 29 government-authored policy documents related to food safety.

View Article and Find Full Text PDF

Global regulators enable bacterial adaptation to a phenotypic trade-off.

iScience

January 2025

Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France.

Cellular fitness depends on multiple phenotypes that must be balanced during evolutionary adaptation. For instance, coordinating growth and motility is critical for microbial colonization and cancer invasiveness. In bacteria, these phenotypes are controlled by local regulators that target single operons, as well as by global regulators that impact hundreds of genes.

View Article and Find Full Text PDF

Conventional and regionally distinctive risk factors for first-onset myocardial infarction: the Bangladesh Risk of Acute Vascular Events (BRAVE) case-control study.

Lancet Reg Health Southeast Asia

January 2025

British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

Background: South Asians may be particularly susceptible to premature myocardial infarction (MI) owing both to conventional cardiovascular risk factors and practices distinctive to South Asia. Identifying modifiable risk factors for MI in these populations could inform prevention strategies. We have, therefore, studied conventional risk factors and other characteristics in relation to occurrence of first MI in Bangladesh.

View Article and Find Full Text PDF

Electromyogram (EMG) has been a fundamental approach for prosthetic hand control. However it is limited by the functionality of residual muscles and muscle fatigue. Currently, exploring temporal shifts in brain networks and accurately classifying noninvasive electroencephalogram (EEG) for prosthetic hand control remains challenging.

View Article and Find Full Text PDF

Background: In Nigeria, trauma care faces challenges due to high injury and death rates from road traffic accidents and violence. Improvements are underway, but gaps in service availability, training, and coordination persist, necessitating evidence-based interventions.

Purpose: To evaluate trauma care practices in Nigeria, focusing on practitioners' perceptions of training, resources, and care quality to inform policy and practice enhancements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!