The homeostatic control of presynaptic neurotransmitter release stabilizes information transfer at synaptic connections in the nervous system of organisms ranging from insect to human. Presynaptic homeostatic signaling centers upon the regulated membrane insertion of an amiloride-sensitive degenerin/epithelial sodium (Deg/ENaC) channel. Elucidating the subunit composition of this channel is an essential step toward defining the underlying mechanisms of presynaptic homeostatic plasticity (PHP). Here, we demonstrate that the ppk1 gene encodes an essential subunit of this Deg/ENaC channel, functioning in motoneurons for the rapid induction and maintenance of PHP. We provide genetic and biochemical evidence that PPK1 functions together with PPK11 and PPK16 as a presynaptic, hetero-trimeric Deg/ENaC channel. Finally, we highlight tight control of Deg/ENaC channel expression and activity, showing increased PPK1 protein expression during PHP and evidence for signaling mechanisms that fine tune the level of Deg/ENaC activity during PHP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599149 | PMC |
http://dx.doi.org/10.1016/j.celrep.2017.07.074 | DOI Listing |
Curr Biol
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA. Electronic address:
Evolutionary arms races can lead to extremely specific and effective defense mechanisms, including venoms that deter predators by targeting nociceptive (pain-sensing) pathways. The venom of velvet ants (Hymenoptera: Mutillidae) is notoriously painful. It has been described as "Explosive and long lasting, you sound insane as you scream.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Michael Sars Centre, University of Bergen, Bergen, Norway. Electronic address:
Diarylamidines are a group of widely used small molecule drugs. One common use of diarylamidines is their pharmacological inhibition of ligand-gated cation channels, including tetrameric ionotropic glutamate receptors and trimeric degenerin/epithelial sodium channel/acid-sensing ion channels. Here, we discover a degenerin/epithelial sodium channel/acid-sensing ion channel from the brachiopod (lamp shell) Novocrania anomala, at which diarylamidines act as agonists.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany.
The only known peptide-gated ion channels-FaNaCs/WaNaCs and HyNaCs-belong to different clades of the DEG/ENaC family. FaNaCs are activated by the short neuropeptide FMRFamide, and HyNaCs by Hydra RFamides, which are not evolutionarily related to FMRFamide. The FMRFamide-binding site in FaNaCs was recently identified in a cleft atop the large extracellular domain.
View Article and Find Full Text PDFNat Struct Mol Biol
April 2024
Michael Sars Centre, University of Bergen, Bergen, Norway.
Rapid signaling between neurons is mediated by ligand-gated ion channels, cell-surface proteins with an extracellular ligand-binding domain and a membrane-spanning ion channel domain. The degenerin/epithelial sodium channel (DEG/ENaC) superfamily is diverse in terms of its gating stimuli, with some DEG/ENaCs gated by neuropeptides, and others gated by pH, mechanical force or enzymatic activity. The mechanism by which ligands bind to and activate DEG/ENaCs is poorly understood.
View Article and Find Full Text PDFMol Phylogenet Evol
March 2024
Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain. Electronic address:
Chemoreception is critical for the survival and reproduction of animals. Except for a reduced group of insects and chelicerates, the molecular identity of chemosensory proteins is poorly understood in invertebrates. Gastropoda is the extant mollusk class with the greatest species richness, including marine, freshwater, and terrestrial lineages, and likely, highly diverse chemoreception systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!