Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The long noncoding RNA Malat1 has been reported to be an oncogene that promotes tumor progress and correlates with prognosis in glioma. Growing evidence shows that autophagy plays a very important role in tumorigenesis and tumor cell survival, but whether Malat1 regulates autophagy in glioma is still unclear. In this study, we found that Malat1 expression and autophagy activity were significantly increased in glioma tissues compared with adjacent normal tissues. Additionally, Malat1 level was positively correlated with the expression of LC3-II (autophagy marker) mRNA in vivo. In vitro assays revealed that Malat1 significantly promoted autophagy activation and cell proliferation in glioma cells. More importantly, inhibition of autophagy by 3-MA relieved Malat1-induced cell proliferation. These data demonstrated that Malat1 activates autophagy and increases cell proliferation in glioma. We further investigated the molecular mechanisms whereby Malat1 functioned on glioma cell autophagy and proliferation. We found that Malat1 served as an endogenous sponge to reduce miR-101 expression by directly binding to miR-101. Moreover, Malat1 abolished the suppression effects of miR-101 on glioma cell autophagy and proliferation, which involved in upregulating the expression of miR-101 targets STMN1, RAB5A and ATG4D. Overall, our study elucidated a novel Malat1-miR-101-STMN1/RAB5A/ATG4D regulatory network that Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2017.08.070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!