Intestinal smooth muscle cells play a critical role in the remodeling of intestinal structure and functional adaptation after bowel resection. Recent studies have shown that supplementation of butyrate (Bu) contributes to the compensatory expansion of a muscular layer of the residual intestine in a rodent model of short-bowel syndrome (SBS). However, the underlying mechanism remains elusive. In this study, we found that the growth of human intestinal smooth muscle cells (HISMCs) was significantly stimulated by Bu via activation of Yes-Associated Protein (YAP). Incubation with 0.5 mM Bu induced a distinct proliferative effect on HISMCs, as indicated by the promotion of cell cycle progression and increased DNA replication. Notably, YAP silencing by RNA interference or its specific inhibitor significantly abolished the proliferative effect of Bu on HISMCs. Furthermore, Bu induced YAP expression and enhanced the translocation of YAP from the cytoplasm to the nucleus, which led to changes in the expression of mitogenesis genes, including TEAD1, TEAD4, CTGF, and Cyr61. These results provide evidence that Bu stimulates the growth of human intestinal muscle cells by activation of YAP, which may be a potential treatment for improving intestinal adaptation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.26149 | DOI Listing |
World J Stem Cells
January 2025
Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China.
Background: Uterine injury can cause uterine scarring, leading to a series of complications that threaten women's health. Uterine healing is a complex process, and there are currently no effective treatments. Although our previous studies have shown that bone marrow mesenchymal stem cells (BMSCs) promote uterine damage repair, the underlying mechanisms remain unclear.
View Article and Find Full Text PDFGastro Hep Adv
September 2024
Department of Surgery, UTHealth at Houston, Houston, Texas.
Background And Aims: Pancreatic stellate cells (PSCs) are critical mediators in chronic pancreatitis with an undefined role in acute pancreatitis (AP). PSCs consist of a heterogenous group of cells and are considered interchangeable with pancreatic fibroblasts. This study explored the heterogeneous nature of PSCs by characterizing pancreatic collagen-expressing fibroblasts (PCFs) via lineage tracing in mouse normal and AP pancreas and determining the effect of PCF depletion in AP.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan.
Bladder cancer ranks as the 9th most common type of cancer worldwide. Approximately 70 % of bladder cancers are diagnosed as non-muscle invasive, and they are treated with transurethral resection followed by intravesical therapy. Doxorubicin is one of the effective cytotoxic drugs used in intravesical and systemic therapy, but its cardiotoxicity and nephrotoxicity limit therapeutic dosages.
View Article and Find Full Text PDFWorld J Cardiol
January 2025
Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China.
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules, consequently augmenting urinary glucose excretion and attenuating blood glucose levels. Extensive clinical investigations have demonstrated their profound cardiovascular efficacy. Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2025
Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China.
Ischemia-reperfusion (I/R) injury is a significant clinical problem impacting the heart and other organs, such as the kidneys and liver. This study explores the protective effects of oxycodone on myocardial I/R injury and its underlying mechanisms. Using a myocardial I/R model in Sprague-Dawley (SD) rats and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in H9c2 cells, we administered oxycodone and inhibited AMP-activated protein kinase (AMPK) with Compound C (C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!