We recently reported 1a (skepinone-L) as a type I p38α MAP kinase inhibitor with high potency and excellent selectivity in vitro and in vivo. However, as a type I inhibitor, it is entirely ATP-competitive and shows just a moderate residence time. Thus, the scope was to develop a new class of advanced compounds maintaining the structural binding features of skepinone-L scaffold like inducing a glycine flip at the hinge region and occupying both hydrophobic regions I and II. Extending this scaffold with suitable residues resulted in an interference with the kinase's R-Spine. By synthesizing 69 compounds, we could significantly prolong the target residence time with one example to 3663 s, along with an excellent selectivity score of 0.006 and an outstanding potency of 1.0 nM. This new binding mode was validated by cocrystallization, showing all binding interactions typifying type I/ binding. Moreover, microsomal studies showed convenient metabolic stability of the most potent, herein reported representatives.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.7b00745DOI Listing

Publication Analysis

Top Keywords

excellent selectivity
12
residence time
12
type p38α
8
p38α map
8
map kinase
8
high potency
8
target residence
8
design synthesis
4
synthesis biological
4
biological evaluation
4

Similar Publications

Background: Accurately distinguishing lymph node metastases (LNM) from papillary thyroid carcinomas (PTC) is crucial in clinical practice. The role of the immune system in PTC-LNM has attracted increasing attention. The aim of the present study was to evaluate the differential expression of 92 immune-related proteins in the serum and identify their potential diagnostic effects in patients with PTC-LNM.

View Article and Find Full Text PDF

Repeatability of radiomic features in myocardial T1 and T2 mapping.

Eur Radiol

January 2025

Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Rostock, Germany.

Purpose: To investigate the test-retest repeatability of radiomic features in myocardial native T1 and T2 mapping.

Methods: In this prospective study, 50 healthy volunteers (29 women and 21 men, mean age 39.4 ± 13.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) electrosynthesis via the 2e oxygen reduction reaction (ORR) is considered as a cost-effective and safe alternative to the energy-intensive anthraquinone process. However, in more practical environments, namely, the use of neutral media and air-fed cathode environments, slow ORR kinetics and insufficient oxygen supply pose significant challenges to efficient HO production at high current densities. In this work, mesoporous B-doped carbons with novel curved BC active sites, synthesized via a carbon dioxide (CO) reduction using a pore-former agent, to simultaneously achieve excellent 2e ORR activity and improved mass transfer properties are introduced.

View Article and Find Full Text PDF

Discovery of Triketone-Indazolones as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibiting-Based Herbicides.

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial herbicide target in current research, playing an important role in the comprehensive management of resistant weeds. However, the limited crop selectivity and less effectiveness against grass weeds of many existing HPPD inhibitors, limit their further application. To address these issues, a series of novel HPPD inhibitors with fused ring structures were designed and synthesized by introducing an electron-rich indazolone ring and combining it with the classical triketone pharmacophore structure.

View Article and Find Full Text PDF

Near-infrared (NIR)-triggered type-I photosensitizers are crucial to address the constraints of hypoxic tumor microenvironments in phototherapy; however, significant challenges remain. By selecting an electron-deficient unit, a matched energy gap in the upper-level state is instrumental in boosting the efficiency of intersystem crossing for the type-I electron transfer process. 2-Cyanothiazole, an electron acceptor, is covalently linked with N, N-diphenyl-4-(thiophen-2-yl)aniline to yield a multifunctional photosensitizer (TTNH) that exhibits intrinsic NIR absorbance and compatible T energy levels, facilitating both radiative and nonradiative transitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!