The development of practical solutions for the energy-efficient capture of carbon dioxide is of prime importance and continues to attract intensive research interest. Conceivably, the implementation of adsorption-based processes using different cycling modes, e.g., pressure-swing adsorption or temperature-swing adsorption, offers great prospects to address this challenge. Practically, the successful deployment of practical adsorption-based technologies depends on the development of made-to-order adsorbents expressing mutually two compulsory requisites: i) high selectivity/affinity for CO and ii) excellent chemical stability in the presence of impurities. This study presents a new comprehensive experimental protocol apposite for assessing the prospects of a given physical adsorbent for carbon capture under flue gas stream conditions. The protocol permits: i) the baseline performance of commercial adsorbents such as zeolite 13X, activated carbon versus liquid amine scrubbing to be ascertained, and ii) a standardized evaluation of the best reported metal-organic framework (MOF) materials for carbon dioxide capture from flue gas to be undertaken. This extensive study corroborates the exceptional CO capture performance of the recently isolated second-generation fluorinated MOF material, NbOFFIVE-1-Ni, concomitant with an impressive chemical stability and a low energy for regeneration. Essentially, the NbOFFIVE-1-Ni adsorbent presents the best compromise by satisfying all the required metrics for efficient CO scrubbing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201702953 | DOI Listing |
PLoS One
December 2024
Energy Engineering Department, Sharif University of Technology, Tehran, Iran.
One of the actions taken to mitigate the climate change is research, development and demonstration (RD&D) investments in renewable energy (RE) technology. In addition to domestic RD&D spending, the import of foreign technologies, as a main channel of technology transfer, is another option to obtain higher share of renewable energies in order to achieve climate objectives. In this study, a panel dataset of 28 OECD member countries from 2011 to 2020 is analyzed, using the OLS, fixed-effects, and two-step system GMM methods, to assess the impacts of public spending on renewable energy RD&D (RERD) and the import of renewable energy technologies on the energy-related CO2 emissions.
View Article and Find Full Text PDFJ Fluoresc
December 2024
Jiamusi University, Jiamusi, 154007, China.
In this work, Waste pine nut shells were used as organic carbon source of biomass to synthesize carbon quantum dots. A highly responsive and selective fluorescent nanosensor (Si-doped biomass-derived carbon dots with molecular imprinted polymers, Si-CDs@MIPs) was designed for determination of Rutin (RT) in Chinese herbal substances like Sophora japonica L..
View Article and Find Full Text PDFNanomicro Lett
December 2024
Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
The metal-carbon dioxide batteries, emerging as high-energy-density energy storage devices, enable direct CO utilization, offering promising prospects for CO capture and utilization, energy conversion, and storage. However, the electrochemical performance of M-CO batteries faces significant challenges, particularly at extreme temperatures. Issues such as high overpotential, poor charge reversibility, and cycling capacity decay arise from complex reaction interfaces, sluggish oxidation kinetics, inefficient catalysts, dendrite growth, and unstable electrolytes.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, P.R. China.
Electrochemical CO capture driven by renewable electricity holds significant potential for efficient decarbonization. However, the widespread adoption of this approach is currently limited by issues such as instability, discontinuity, high energy demand, and challenges in scaling up. In this study, we propose a scalable strategy that addresses these limitations by transforming the conventional single-step electrochemical redox reaction into a stepwise electrochemical-chemical redox process.
View Article and Find Full Text PDFEnviron Technol
December 2024
Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, USA.
A novel air-to-liquid mass transfer system using wetted rotating membranes was designed to enhance air-to-liquid carbon dioxide (CO) mass transfer efficiency. Traditional methods, such as sparging, are energy-intensive, but the rotating membrane reduces energy demands by optimising membrane wetting via rotational motion. Experimental tests were conducted using a small-scale system with a membrane width of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!