Guided bone regeneration: materials and biological mechanisms revisited.

Eur J Oral Sci

Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Published: October 2017

Guided bone regeneration (GBR) is commonly used in combination with the installment of titanium implants. The application of a membrane to exclude non-osteogenic tissues from interfering with bone regeneration is a key principle of GBR. Membrane materials possess a number of properties which are amenable to modification. A large number of membranes have been introduced for experimental and clinical verification. This prompts the need for an update on membrane properties and the biological outcomes, as well as a critical assessment of the biological mechanisms governing bone regeneration in defects covered by membranes. The relevant literature for this narrative review was assessed after a MEDLINE/PubMed database search. Experimental data suggest that different modifications of the physicochemical and mechanical properties of membranes may promote bone regeneration. Nevertheless, the precise role of membrane porosities for the barrier function of GBR membranes still awaits elucidation. Novel experimental findings also suggest an active role of the membrane compartment per se in promoting the regenerative processes in the underlying defect during GBR, instead of being purely a passive barrier. The optimization of membrane materials by systematically addressing both the barrier and the bioactive properties is an important strategy in this field of research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5601292PMC
http://dx.doi.org/10.1111/eos.12364DOI Listing

Publication Analysis

Top Keywords

bone regeneration
20
guided bone
8
biological mechanisms
8
membrane materials
8
role membrane
8
membrane
6
regeneration
5
regeneration materials
4
materials biological
4
mechanisms revisited
4

Similar Publications

In mammalian species, neural tissues cannot regenerate following severe spinal cord injury (SCI), for which stem cell transplantation is a promising treatment. Neural stem cells (NSCs) have the potential to repair SCI; however, in unfavourable microenvironments, transplanted NSCs mainly differentiate into astrocytes rather than neurons. In contrast, bone mesenchymal stem cells (BMSCs) promote the differentiation of NSCs into neurons and regulate inflammatory responses.

View Article and Find Full Text PDF

Background: Pain and inflammation are closely associated with rheumatoid arthritis (RA), which affects the bones and joints.

Aim: While there are a number of therapeutic options for arthritis, their side effects restrict their use and encourage the search for alternative, natural remedies.

Methods: In male rats, we examined the anti-inflammatory and anti-arthritic properties of venom (NHV).

View Article and Find Full Text PDF

THE EFFECTIVENESS OF PLATELET RICH FIBRIN IN ALVEOLAR RIDGE RECONSTRUCTIVE OR GUIDED BONE REGENERATIVE PROCEDURES: A SYSTEMATIC REVIEW AND META-ANALYSIS.: platelet rich fibrin in alveolar ridge augmentation.

J Dent

December 2024

Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom. Electronic address:

Introduction And Objectives: Clinical studies have shown favorable outcomes following use of platelet rich fibrin (PRF), either alone or in conjunction with biomaterials for alveolar ridge reconstruction (ARR) or guided bone regeneration (GBR) . While PRF application accelerates wound healing and reduces postoperative discomfort, its effects on the alveolar bone gain, as part of ARR or GBR is less clear. Therefore, this study aims to investigate the clinical effectiveness of PRF when used in ARR or GBR, as well as postoperative discomfort following these procedures.

View Article and Find Full Text PDF

Biological effects, properties and tissue engineering applications of polyhydroxyalkanoates: A review.

Int J Biol Macromol

December 2024

Department of Cosmetic and Plastic Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. Electronic address:

Polyhydroxyalkanoates (PHAs) are a group of polymers with a variety of monomers, which are extracted from microorganisms and plants. Due to its good biocompatibility, biodegradability, tunable mechanical property and piezoelectricity, PHAs have been widely used in biomedical fields, such as bone, cartilage, nerve, vascular and skin tissue engineering. This review focuses on the in vivo synthesis, metabolism and biological functions of PHA, and the applications of PHAs in the field of tissue engineering and commercial were also summarized and discussed.

View Article and Find Full Text PDF

The reconstruction of full-thickness scalp defects with exposed bone can be challenging. A single-stage reconstruction could be the preferred option for patients with multiple comorbidities. We propose using a dermal regeneration template (Matriderm Flex) and full-thickness skin grafts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!