Predicting the helix-helix interactions from correlated residue mutations.

Proteins

MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.

Published: December 2017

Helix-helix interactions are crucial in the structure assembly, stability and function of helix-rich proteins including many membrane proteins. In spite of remarkable progresses over the past decades, the accuracy of predicting protein structures from their amino acid sequences is still far from satisfaction. In this work, we focused on a simpler problem, the prediction of helix-helix interactions, the results of which could facilitate practical protein structure prediction by constraining the sampling space. Specifically, we started from the noisy 2D residue contact maps derived from correlated residue mutations, and utilized ridge detection to identify the characteristic residue contact patterns for helix-helix interactions. The ridge information as well as a few additional features were then fed into a machine learning model HHConPred to predict interactions between helix pairs. In an independent test, our method achieved an F-measure of ∼60% for predicting helix-helix interactions. Moreover, although the model was trained mainly using soluble proteins, it could be extended to membrane proteins with at least comparable performance relatively to previous approaches that were generated purely using membrane proteins. All data and source codes are available at http://166.111.152.91/Downloads.html or https://github.com/dpxiong/HHConPred.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.25370DOI Listing

Publication Analysis

Top Keywords

helix-helix interactions
20
membrane proteins
12
predicting helix-helix
8
correlated residue
8
residue mutations
8
residue contact
8
interactions
6
proteins
5
interactions correlated
4
residue
4

Similar Publications

Large-scale and continuous conformational changes in the RNA self-folding process present significant challenges for structural studies, often requiring trade-offs between resolution and observational scope. Here, we utilize individual-particle cryo-electron tomography (IPET) to examine the post-transcriptional self-folding process of designed RNA origami 6-helix bundle with a clasp helix (6HBC). By avoiding selection, classification, averaging, or chemical fixation and optimizing cryo-ET data acquisition parameters, we reconstruct 120 three-dimensional (3D) density maps from 120 individual particles at an electron dose of no more than 168 eÅ, achieving averaged resolutions ranging from 23 to 35 Å, as estimated by Fourier shell correlation (FSC) at 0.

View Article and Find Full Text PDF
Article Synopsis
  • * In a study of 6000 obligate homodimeric complexes, AXXXA was found in 27,000 occurrences, while GXXXG appeared 18,000 times, mainly in obligate dimers compared to transient and heterodimers.
  • * AXXXA motifs play a key role in stabilizing the structure of proteins through specific hydrophobic interactions; replacing terminal Ala residues with Gly significantly reduces motif occurrences, suggesting its importance for protein design and therapeutic development.
View Article and Find Full Text PDF

Conjugative dissemination of mobile genetic elements (MGEs) among bacteria is initiated by assembly of the relaxosome at the MGE's origin-of-transfer (oriT) sequence. A critical but poorly defined step of relaxosome assembly involves recruitment of the catalytic relaxase to its DNA strand-specific nicking site within oriT. Here, we present evidence by AlphaFold modeling, affinity pulldowns, and in vivo site-directed photocrosslinking that the TraK Ribbon-Helix-Helix DNA-binding protein recruits TraI to oriT through a dynamic interaction in which TraI's C-terminal unstructured domain (TraI) wraps around TraK's C-proximal tetramerization domain.

View Article and Find Full Text PDF

The envelope (E) protein of SARS-CoV-2 is the smallest of the three structural membrane proteins of the virus. E mediates budding of the progeny virus in the endoplasmic reticulum Golgi intermediate compartment of the cell. It also conducts ions, and this channel activity is associated with the pathogenicity of SARS-CoV-2.

View Article and Find Full Text PDF

Accurate de novo design of heterochiral protein-protein interactions.

Cell Res

December 2024

Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.

Article Synopsis
  • Researchers designed new D-proteins (50-65 residues) that specifically bind to natural L-proteins, which could be useful in biotechnology.
  • These D-proteins showed strong binding affinity to both an artificial L-peptide and important human proteins like TrkA and IL-6, while also effectively inhibiting their signaling in cell studies.
  • The study revealed a high-resolution crystal structure of the D-protein-L-peptide complex, confirming the accuracy of the design method and providing insights into the unique interactions between D-proteins and L-peptides.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!