Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In many organisms of biotechnological importance precise genome editing is limited by inherently low homologous recombination (HR) efficiencies. A number of strategies exist to increase the effectiveness of this native DNA repair pathway; however, most strategies rely on permanently disabling competing repair pathways, thus reducing an organism's capacity to repair naturally occurring double strand breaks. Here, we describe a CRISPR interference (CRISPRi) system for gene repression in the oleochemical-producing yeast Yarrowia lipolytica. By using a multiplexed sgRNA targeting strategy, we demonstrate efficient repression of eight out of nine targeted genes to enhance HR. Strains with nonhomologous end-joining repressed were shown to have increased rates of HR when transformed with a linear DNA fragment with homology to a genomic locus. With multiplexed targeting of KU70 and KU80, and enhanced repression with Mxi1 fused to deactivated Cas9 (dCas9), rates of HR as high as 90% were achieved. The developed CRISPRi system enables enhanced HR in Y. lipolytica without permanent genetic knockouts and promises to be a potent tool for other metabolic engineering, synthetic biology, and functional genomics studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.26404 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!