A systematic review and meta-analysis of the protective effects of metformin in experimental myocardial infarction.

PLoS One

SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Nijmegen Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.

Published: October 2017

Metformin improves cardiovascular prognosis in patients with diabetes mellitus, compared to alternative glucose-lowering drugs, despite similar glycemic control. Direct cardiovascular protective properties have therefore been proposed, and studied in preclinical models of myocardial infarction. We now aim to critically assess the quality and outcome of these studies. We present a systematic review, quality assessment and meta-analysis of the effect of metformin in animal studies of experimental myocardial infarction. Through a comprehensive search in Pubmed and EMBASE, we identified 27 studies, 11 reporting on ex vivo experiments and 18 reporting on in vivo experiments. The primary endpoint infarct size as percentage of area at risk was significantly reduced by metformin in vivo (MD -18.11[-24.09,-12.14]) and ex vivo (MD -18.70[-25.39, -12.02]). Metformin improved the secondary endpoints left ventricular ejection fraction (LVEF) and left ventricular end systolic diameter. A borderline significant effect on mortality was observed, and there was no overall effect on cardiac hypertrophy. Subgroup analyses could be performed for comorbidity and timing of treatment (infarct size and mortality) and species and duration of ischemia (LVEF), but none of these variables accounted for significant amounts of heterogeneity. Reporting of possible sources of bias was extremely poor, including randomization (reported in 63%), blinding (33%), and sample size calculation (0%). As a result, risk of bias (assessed using SYRCLE's risk of bias tool) was unclear in the vast majority of studies. We conclude that metformin limits infarct-size and improves cardiac function in animal models of myocardial infarction, but our confidence in the evidence is lowered by the unclear risk of bias and residual unexplained heterogeneity. We recommend an adequately powered, high quality confirmatory animal study to precede a randomized controlled trial of acute administration of metformin in patients undergoing reperfusion for acute myocardial infarction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568412PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183664PLOS

Publication Analysis

Top Keywords

myocardial infarction
20
risk bias
12
systematic review
8
experimental myocardial
8
models myocardial
8
reporting vivo
8
vivo experiments
8
infarct size
8
left ventricular
8
metformin
7

Similar Publications

Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.

View Article and Find Full Text PDF

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF

Mediators of the association between nut consumption and cardiovascular diseases: a two-step mendelian randomization study.

Sci Rep

January 2025

Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, People's Republic of China.

Previous observational studies have reported inconsistent associations between nut consumption and cardiovascular diseases (CVD). This study aims to identify the causal relationship between different types of nuts consumption and CVD, and to quantify the potential mediating effects of cardiometabolic factors. We utilized Genome-Wide Association Study (GWAS) data to assess the causal effects of nut consumption on CVD using two-sample Mendelian randomization (MR) and a two-step MR analysis.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-1 receptor agonist (GLP-1RA) treatment reduces cardiovascular events in type 2 diabetes. Yet, the impact of GLP-1RA treatment before ST-segment elevation myocardial infarction (STEMI) on long-term prognosis in patients with type 2 diabetes remains unclear. In patients with STEMI and type 2 diabetes, we aimed to investigate the association between long-term prognosis and GLP-1RA treatment before STEMI.

View Article and Find Full Text PDF

Background: Left ventricular (LV) myocardial contraction patterns can be assessed using LV mechanical dispersion (LVMD), a parameter closely associated with electrical activation patterns. Despite its potential clinical significance, limited research has been conducted on LVMD following myocardial infarction (MI). This study aims to evaluate the predictive value of cardiac magnetic resonance (CMR)-derived LVMD for adverse clinical outcomes and to explore its correlation with myocardial scar heterogeneity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!