A novel and convenient procedure for the synthesis of 3-acylindoles from simple indoles and aryl iodides has been established. Through ruthenium-catalyzed carbonylative C-H functionalization of indoles, with Mo(CO) as the solid CO source, the desired indol-3-yl aryl ketones were isolated in moderate to good yields. Not only N-alkylindoles but also N-H indoles can be applied here.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.7b02320DOI Listing

Publication Analysis

Top Keywords

ruthenium-catalyzed carbonylative
8
indoles aryl
8
aryl iodides
8
3-acylindoles synthesis
4
synthesis ruthenium-catalyzed
4
carbonylative coupling
4
indoles
4
coupling indoles
4
iodides novel
4
novel convenient
4

Similar Publications

Acrylic nitriles are a versatile class of synthetic precursors for a variety of pharmaceutically active compounds, as well as for nitrile polymers. We devised a stereoselective synthesis of ()-acrylic nitriles from the Ru-catalyzed coupling reaction of nitriles with unsaturated carbonyl compounds via C-C bond cleavage. Both carbon KIE and Hammett correlation data indicated that C-C bond cleavage is the rate-determining step for the coupling reaction.

View Article and Find Full Text PDF

TBAT-Catalyzed Dioxasilinane Formation from Beta-Hydroxy Ketones.

Tetrahedron

February 2025

Department of Chemistry, Western Washington University, Bellingham, WA 98225 (USA).

Beta-hydroxy ketones can be reduced using a sequence of ruthenium-catalyzed silyl etherification followed by tetrabutylammonium fluoride (TBAF) promoted intramolecular hydrosilylation. Switching from TBAF to tetrabutylammonium difluorotriphenylsilicate (TBAT), even without first forming the silyl ether, gave cyclic dioxasilinane products. These somewhat sensitive compounds could be isolated pure by column chromatography using florisil as the stationary phase.

View Article and Find Full Text PDF

Herein, we disclose the first reports on the utilization of vinylene carbonate as a C1 methylene source in ruthenium-catalyzed additive controlled regioselective C4-methylenation and weak chelation-assisted C8-formylmethylation of isoquinolinones. Adopting vinylene carbonate as both a C2 and C1 synthon is an important highlight of this work. Amide carbonyl acts as the traceless directing group in C8-formylmethylation.

View Article and Find Full Text PDF

Catalytic Atroposelective Synthesis of C-N Axially Chiral Aminophosphines via Dynamic Kinetic Resolution.

Angew Chem Int Ed Engl

September 2024

Instituto Investigaciones Químicas (CSIC-US), Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Américo Vespucio 49, 41092, Sevilla, Spain.

A ruthenium-catalyzed reductive amination via asymmetric transfer hydrogenation (ATH) has been used to perform an efficient dynamic kinetic resolution (DKR) of N-aryl 2-formyl pyrroles decorated with a phosphine moiety positioned at the ortho' position. The strategy relies on the labilization of the stereogenic axis in the substrate facilitated by a transient Lewis acid-base interaction (LABI) between the carbonyl carbon and the phosphorus center. The reaction features broad substrate scope of aliphatic amines and N-aryl pyrrole scaffolds, and proceeds under very mild conditions to afford P,N atropisomers in good to high yields and excellent enantioselectivities (up to 99 % ee) for both diphenyl and dicyclohexylphosphino derivatives.

View Article and Find Full Text PDF

The first ruthenium-catalyzed carboamination of olefins with α-carbonyl sulfoxonium ylides is reported. The utilization of an inexpensive ruthenium catalyst enables the concise synthesis of pharmaceutically important isoindolin-1-ones, which possess both a stereogenic center and β-carbonyl side chain. This method is mild, efficient, and scalable and allows for the coupling of a wide range of aryl-, heteroaryl-, alkenyl-, and alkyl-substituted sulfoxonium ylides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!