Detection of pathogenic microorganisms is of great importance for public health and food safety. Traditional protocols can hardly meet the continuously increasing demand in sensitivity and specificity of pathogen detections. In this study, we adopted Vibrio parahaemolyticus (V. parahaemolyticus, Vp) as the model analyte, and developed an antibody-Vp-aptamer heterosandwich-based surface-enhanced Raman scattering (SERS) method in conjunction with in vitro isothermal amplification for sensitive detection of V. parahaemolyticus. The rolling circular amplification (RCA) products provided enormous sites for assembling the Au@Ag nanoparticles and forming excess "hot-spot" sites for Raman measurement. By using this enhanced Raman signal strategy in the detection, a limit of detection (LOD) as low as 1 cfu/mL was successfully achieved for ultrasensitive detection of V. parahaemolyticus. In addition, we have applied this method to artificially contaminated food samples. The detection data indicated that this method is able to determine the concentrations of V. parahaemolyticus in the spiked food samples with satisfactory sensitivity and specificity and, thus, this developed ultrasensitive SERS scheme is well suited for the urgent need in pathogen detection and demonstrated great potential in food safety, environment monitoring, and a clinical setting.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b01717DOI Listing

Publication Analysis

Top Keywords

vitro isothermal
8
surface-enhanced raman
8
detection
8
ultrasensitive detection
8
vibrio parahaemolyticus
8
food safety
8
sensitivity specificity
8
detection parahaemolyticus
8
food samples
8
parahaemolyticus
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!