Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Somatic G17V RHOA mutations were found in 50-70% of angioimmunoblastic T-cell lymphoma (AITL). The mutant RHOA lacks GTP binding capacity, suggesting defects in the classical RHOA signaling. Here, we discovered the novel function of the G17V RHOA: VAV1 was identified as a G17V RHOA-specific binding partner via high-throughput screening. We found that binding of G17V RHOA to VAV1 augmented its adaptor function through phosphorylation of 174Tyr, resulting in acceleration of T-cell receptor (TCR) signaling. Enrichment of cytokine and chemokine-related pathways was also evident by the expression of G17V RHOA. We further identified VAV1 mutations and a new translocation, VAV1-STAP2, in seven of the 85 RHOA mutation-negative samples (8.2%), whereas none of the 41 RHOA mutation-positive samples exhibited VAV1 mutations. Augmentation of 174Tyr phosphorylation was also demonstrated in VAV1-STAP2. Dasatinib, a multikinase inhibitor, efficiently blocked the accelerated VAV1 phosphorylation and the associating TCR signaling by both G17V RHOA and VAV1-STAP2 expression. Phospho-VAV1 staining was demonstrated in the clinical specimens harboring G17V RHOA and VAV1 mutations at a higher frequency than those without. Our findings indicate that the G17V RHOA-VAV1 axis may provide a new therapeutic target in AITL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843900 | PMC |
http://dx.doi.org/10.1038/leu.2017.273 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!