We present an engineered nanolattice material with enhanced mechanical properties that can be broadly applied as a thin film over large areas. The nanolattice films consist of ordered, three-dimensional architecture with thin-shell tubular elements, resulting in favorable modulus-density scaling (n ~ 1.1), enhanced energy dissipation, and extremely large material recoverability for strains up to 20% under normal compressive loading. At 95.6% porosity, the nanolattice film has demonstrated modulus of 1.19 GPa and specific energy dissipation of 325.5 kJ/kg, surpassing previously reported values at similar densities. The largest length scale in the reported nanolattice is the 500 nm unit-cell lattice constant, allowing the film to behave more like a continuum material and be visually unobservable. Fabricated using three-dimensional colloidal nanolithography and atomic layer deposition, the process can be scaled for large-area patterning. The proposed nanolattice film can find applications as a robust multifunctional insulating film that can be applied in integrated photonic elements, optoelectronic devices, and microcircuit chips.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5567370PMC
http://dx.doi.org/10.1038/s41598-017-09521-6DOI Listing

Publication Analysis

Top Keywords

nanolattice film
12
energy dissipation
12
film
6
nanolattice
5
large-area nanolattice
4
film enhanced
4
enhanced modulus
4
modulus hardness
4
hardness energy
4
dissipation engineered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!