Plasmonic hotspots generate a blinking Surface Enhanced Raman Spectroscopy (SERS) effect that can be processed using Stochastic Optical Reconstruction Microscopy (STORM) algorithms for super-resolved imaging. Furthermore, by imaging through a diffraction grating, STORM algorithms can be modified to extract a full SERS spectrum, thereby capturing spectral as well as spatial content simultaneously. Here we demonstrate SERS and STORM combined in this way for super-resolved chemical imaging using an ultra-thin silver substrate. Images of gram-positive and gram-negative bacteria taken with this technique show excellent agreement with scanning electron microscope images, high spatial resolution at <50 nm, and spectral SERS content that can be correlated to different regions. This may be used to identify unique chemical signatures of various cells. Finally, because we image through as-deposited, ultra-thin silver films, this technique requires no nanofabrication beyond a single deposition and looks at the cell samples from below. This allows direct imaging of the cell/substrate interface of thick specimens or imaging samples in turbid or opaque liquids since the optical path doesn't pass through the sample. These results show promise that super-resolution chemical imaging may be used to differentiate chemical signatures from cells and could be applied to other biological structures of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5567233PMC
http://dx.doi.org/10.1038/s41598-017-08915-wDOI Listing

Publication Analysis

Top Keywords

ultra-thin silver
8
storm algorithms
8
chemically imaging
4
imaging bacteria
4
bacteria super-resolution
4
sers
4
super-resolution sers
4
sers ultra-thin
4
silver substrates
4
substrates plasmonic
4

Similar Publications

We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer.

View Article and Find Full Text PDF

A small amount of silver was obliquely deposited onto a polymer subwavelength grating to form a metasurface that comprised silver split-tubes. An ultra-thin silver film with a monitor-controlled thickness of 20 nm at the corner of each ridge of the grating provided the most sensitive surface-enhanced Raman scattering (SERS) measurements. An excitation laser beam that was incident from the substrate provided similar or better SERS enhancement than did the general configuration with the laser beam incident directly on the surface of the nanostructure.

View Article and Find Full Text PDF

Direct Synthesis of Semiconductive AgBiS NC Inks toward High-Efficiency, Low-Cost and Environmental-Friendly Solar Cells.

Angew Chem Int Ed Engl

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China.

Silver bismuth sulfide nanocrystals (AgBiS NCs) embody a pioneering heavy-metal-free photovoltaic material renowned for its ultrahigh absorption coefficient, offering promising opportunities for advancing the field of ultra-thin and biocompatible solar cells. Currently, the fabrication of AgBiS NC photovoltaic devices relies on hot-injection synthesis and subsequent tedious ligand exchange, leading to high production cost, complex processes and environmental pollution. Here, we developed a direct-synthesis (DS) method without ligand-exchange for AgBiS NC semiconductive inks, significantly simplifying the material preparation and device fabrication processes.

View Article and Find Full Text PDF

Ag nanoclusters loaded ultra-thin porous SnO nanosheets for ppb level isopropanol detection.

Talanta

March 2025

College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China. Electronic address:

Article Synopsis
  • Traditional methods to synthesize silver nanoparticles for semiconductor metal oxide sensors are limited in controlling their size and shape, leading to less effective gas sensing.
  • This study introduces a novel approach where silver nanoclusters (NCs) are successfully loaded onto ultra-thin porous SnO nanosheets, achieving highly sensitive detection of isopropanol at parts-per-billion levels.
  • The enhanced sensing performance is attributed to the optimized structure of SnO, the changes in electronic properties due to Ag NCs, and the synergistic effects between the two materials, expanding the application potential of noble metal NCs in gas sensors.
View Article and Find Full Text PDF

studies revealing the effects of Au surfactant on the formation of ultra-thin Ag layers using high-power impulse magnetron sputter deposition.

Nanoscale Horiz

November 2024

Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany.

Introducing metallic nanoparticles, such as Au, on a substrate as a surfactant or wetting inducer has been demonstrated as a simple but effective way to facilitate the formation of ultra-thin silver layers (UTSLs) during the subsequent Ag deposition. However, most studies have paid much attention to the applications of UTSLs assisted by metallic surfactants but neglected the underlying mechanisms of how the metallic surfactant affects the formation of UTSL. Herein, we have applied grazing-incidence wide-/small-angle X-ray scattering to reveal the effects of the Au surfactant or seed layer (pre-deposited Au nanoparticles) on the formation of UTSL by high-power impulse magnetron sputter deposition (HiPIMS) on a zinc oxide (ZnO) thin film.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!