All enveloped viruses, including herpesviruses, must fuse their envelope with the host membrane to deliver their genomes into target cells, making this essential step subject to interference by antibodies and drugs. Viral fusion is mediated by a viral surface protein that transits from an initial prefusion conformation to a final postfusion conformation. Strikingly, the prefusion conformation of the herpesvirus fusion protein, gB, is poorly understood. Herpes simplex virus (HSV), a model system for herpesviruses, causes diseases ranging from mild skin lesions to serious encephalitis and neonatal infections. Using cryo-electron tomography and subtomogram averaging, we have characterized the structure of the prefusion conformation and fusion intermediates of HSV-1 gB. To this end, we have set up a system that generates microvesicles displaying full-length gB on their envelope. We confirmed proper folding of gB by nondenaturing electrophoresis-Western blotting with a panel of monoclonal antibodies (MAbs) covering all gB domains. To elucidate the arrangement of gB domains, we labeled them by using (i) mutagenesis to insert fluorescent proteins at specific positions, (ii) coexpression of gB with Fabs for a neutralizing MAb with known binding sites, and (iii) incubation of gB with an antibody directed against the fusion loops. Our results show that gB starts in a compact prefusion conformation with the fusion loops pointing toward the viral membrane and suggest, for the first time, a model for gB's conformational rearrangements during fusion. These experiments further illustrate how neutralizing antibodies can interfere with the essential gB structural transitions that mediate viral entry and therefore infectivity. The herpesvirus family includes herpes simplex virus (HSV) and other human viruses that cause lifelong infections and a variety of diseases, like skin lesions, encephalitis, and cancers. As enveloped viruses, herpesviruses must fuse their envelope with the host membrane to start an infection. This process is mediated by a viral surface protein that transitions from an initial conformation (prefusion) to a final, more stable, conformation (postfusion). However, the prefusion conformation of the herpesvirus fusion protein (gB) is poorly understood. To elucidate the structure of the prefusion conformation of HSV type 1 gB, we have employed cryo-electron microscopy to study gB molecules expressed on the surface of vesicles. Using different approaches to label gB's domains allowed us to model the structures of the prefusion and intermediate conformations of gB. Overall, our findings enhance our understanding of HSV fusion and lay the groundwork for the development of new ways to prevent and block HSV infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565971 | PMC |
http://dx.doi.org/10.1128/mBio.01268-17 | DOI Listing |
PLoS Pathog
January 2025
Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland.
For use in prevention and treatment, HIV-1 broadly neutralizing antibodies (bnAbs) have to overcome Env conformational heterogeneity of viral quasispecies and neutralize with constant high potency. Comparative analysis of neutralization data from the CATNAP database revealed a nuanced relationship between bnAb activity and Env conformational flexibility, with substantial epitope-specific variation of bnAb potency ranging from increased to decreased activity against open, neutralization-sensitive Env. To systematically investigate the impact of variability in Env conformation on bnAb potency we screened 126 JR-CSF point mutants for generalized neutralization sensitivity to weakly neutralizing antibodies (weak-nAbs) depending on trimer opening and plasma from people with chronic HIV-1 infection.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA.
Discovered in 1994 in lesions of an AIDS patient, Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the gammaherpesvirus subfamily of the family, which contains a total of nine that infect humans. These viruses all contain a large envelope glycoprotein, glycoprotein B (gB), that is required for viral fusion with host cell membrane to initial infection. Although the atomic structures of five other human herpesviruses in their postfusion conformation and one in its prefusion conformation are known, the atomic structure of KSHV gB has not been reported.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Introduction: Vaccine platforms such as viral vectors and mRNA can accelerate vaccine development in response to newly emerging pathogens, as demonstrated during the COVID-19 pandemic. However, the differential effects of platform and antigen insert on vaccine immunogenicity remain incompletely understood. Innate immune responses induced by viral vector vaccines are suggested to have an adjuvant effect for subsequent adaptive immunity.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China. Electronic address:
A safe and effective vaccine is urgently needed to prevent acute respiratory infections caused by respiratory syncytial virus (RSV). Oral administration offers several advantages, including ease of delivery, minimal stress for vaccine recipients, and greater safety than the systemic injection. In this study, we developed an oral vaccine candidate based on the human adenovirus serotype 5 (Ad5) vector, Ad5-PreF-DS2, encoding a prefusion protein of RSV with a dsRNA as an endogenous adjuvant.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
The JN.1-sublineage KP.3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!