Noninvasive encapsulated follicular variants of papillary thyroid carcinomas have been recently reclassified as noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTPs). NIFTPs exhibit a behavior that is very close to that of follicular adenomas but different from the infiltrative and invasive follicular variants of papillary thyroid carcinomas (FVPTCs). The importance of miRNAs to carcinogenesis has been reported in recent years. miRNAs seem to be promising diagnostic and prognostic molecular markers for thyroid cancer, and the combination of miRNA expression and mutational status might improve cytological diagnosis. The aim of the present study was to evaluate the miRNA expression profile in wild-type, or -mutated NIFTPs, infiltrative and invasive FVPTCs, and follicular adenomas using the nCounter miRNA Expression assay (NanoString Technologies). To identify the significant Kyoto Encyclopedia of Genes and Genomes (KEGG) molecular pathways associated with deregulated miRNAs, we used the union of pathways option in DNA Intelligent Analysis (DIANA) miRPath software. We have shown that the miRNA expression profiles of wild-type and mutated NIFTPs could be different. The expression profile of wild-type NIFTPs seems comparable to that of follicular adenomas, whereas mutated NIFTPs have an expression profile similar to that of infiltrative and invasive FVPTCs. The upregulation of 4 miRNAs (miR-221-5p, miR-221-3p, miR-222-3p, miR-146b-5p) and the downregulation of 8 miRNAs (miR-181a-3p, miR-28-5p, miR-363-3p, miR-342-3p, miR-1285-5p, miR-152-3p, miR-25-3p, miR-30e-3) in mutated NIFTPs compared to wild-type ones suggest a potential invasive-like phenotype by deregulating the specific pathways involved in cell adhesion and cell migration (Hippo signaling pathway, ECM-receptor interaction, adherens junction, regulation of actin cytoskeleton, fatty acid biosynthesis and metabolism).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/ERC-17-0167 | DOI Listing |
Mol Cell Biochem
January 2025
Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.
Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.
Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.
Biochem Genet
January 2025
Department of Pulmonary Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
Angiotensin-converting enzyme 2 (ACE2) has been reported to exert a protective effect in acute lung injury (ALI), though its underlying mechanism remains incompletely understood. In this study, ACE2 expression was found to be upregulated in a mouse model of ALI induced by lipopolysaccharide (LPS) injection. ACE2 knockdown modulated the severity of ALI, the extent of autophagy, and the mTOR pathway in this model.
View Article and Find Full Text PDFJ Exp Bot
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
Flowering, a pivotal plant lifecycle event, is intricately regulated by environmental and endogenous signals via genetic and epigenetic mechanisms. Photoperiod is a crucial environmental cue that induces flowering by activating integrators through genetic and epigenetic pathways. However, the specific role of DNA methylation, a conserved epigenetic marker, in photoperiodic flowering remains unclear.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), 4 place Jussieu, F-75005 Paris, France.
In the animal kingdom, metamorphosis is a well-known developmental transition within various taxa (Cnidarians, Echinoderms, Molluscs, Arthropods, Vertebrates, etc.), which is characterized by the switching from a larval stage to an adult form through the induction of morpho-anatomical, physiological, behavioral, and/or ecological changes. Over the last decades, numerous studies have focused on the hormonal control of cellular processes underlying metamorphosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!