Effect of kisspeptin on the proliferation and apoptosis of bovine granulosa cells.

Anim Reprod Sci

Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China. Electronic address:

Published: October 2017

Previous studies have shown that kisspeptin (Kp-10) is expressed in mammalian ovaries; however, the expression and role of Kp-10 in bovine ovarian granulosa cells are still unclear. In this study, we assessed the expression of Kp-10 and its effects on the proliferation and apoptosis of bovine granulosa cells. Immunohistochemical analysis showed that Kp-10 was expressed in the cytoplasm of bovine ovarian granulosa cells. Moreover, MTT assays showed that 100nM Kp-10 significantly inhibited the viability of granulosa cells (P<0.05). Flow cytometry analysis showed that Kp-10 could significantly increase accumulation of cells in the G phase, decrease accumulation of cells in the S phase, and promote apoptosis in bovine granulosa cells (P<0.05). Additionally, Kp-10 decreased the mRNA levels of Bcl-2, an anti-apoptotic gene; increased the mRNA levels of caspase-3, a pro-apoptotic gene; and increased the mRNA levels of Fas and Fasl (P< 0.05). Thus, our findings demonstrated for the first time that Kp-10 inhibited proliferation and promoted apoptosis in bovine ovarian granulosa cells. These findings provide insights into our understanding of the role of Kp-10 in mediating the proliferation of bovine granulosa cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2017.07.008DOI Listing

Publication Analysis

Top Keywords

granulosa cells
20
proliferation apoptosis
8
apoptosis bovine
8
bovine granulosa
8
kp-10 expressed
8
bovine ovarian
8
ovarian granulosa
8
granulosa
5
cells
5
kp-10
5

Similar Publications

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

Objective: Polycystic ovary syndrome (PCOS) is a diverse condition with an unknown cause. The precise mechanism underlying ovulatory abnormalities in PCOS remains unclear. It is widely believed that malfunction of granulosa cells is the primary factor contributing to aberrant follicular formation in PCOS.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach.

Syst Biol Reprod Med

December 2025

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.

View Article and Find Full Text PDF

High concentrations of prolactin (PRL)-induced ovine ovarian granulosa cell (GCs) apoptosis and could aggravate the induced effect. However, the molecular mechanisms that -induced GC apoptosis and repressed steroid hormone secretion remain unclear. In this study, GCs in the P group (GCs with high PRL concentration: 500 ng/mL PRL) and P-10 group (GCs with 500 ng/mL PRL infected by lentiviruses carrying overexpressed sequences of ) were collected for whole-transcriptome analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!