Thermodynamic hardness and the maximum hardness principle.

J Chem Phys

Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico.

Published: August 2017

An alternative definition of hardness (called the thermodynamic hardness) within the grand canonical ensemble formalism is proposed in terms of the partial derivative of the electronic chemical potential with respect to the thermodynamic chemical potential of the reservoir, keeping the temperature and the external potential constant. This temperature dependent definition may be interpreted as a measure of the propensity of a system to go through a charge transfer process when it interacts with other species, and thus it keeps the philosophy of the original definition. When the derivative is expressed in terms of the three-state ensemble model, in the regime of low temperatures and up to temperatures of chemical interest, one finds that for zero fractional charge, the thermodynamic hardness is proportional to T(I-A), where I is the first ionization potential, A is the electron affinity, and T is the temperature. However, the thermodynamic hardness is nearly zero when the fractional charge is different from zero. Thus, through the present definition, one avoids the presence of the Dirac delta function. We show that the chemical hardness defined in this way provides meaningful and discernible information about the hardness properties of a chemical species exhibiting integer or a fractional average number of electrons, and this analysis allowed us to establish a link between the maximum possible value of the hardness here defined, with the minimum softness principle, showing that both principles are related to minimum fractional charge and maximum stability conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4998701DOI Listing

Publication Analysis

Top Keywords

thermodynamic hardness
16
fractional charge
12
hardness
8
maximum hardness
8
chemical potential
8
hardness defined
8
thermodynamic
5
chemical
5
hardness maximum
4
hardness principle
4

Similar Publications

The welding of titanium alloys is an important topic in today's industrial field, and the interaction between the solder and the base material is crucial for the quality of the welded parts. The structural, elastic, electronic, and thermal properties of Ti-Al-Me (Me = Cu, Fe and Ni) alloys (TAMs) with the face-centered cubic structures were investigated using plane-wave pseudo potential method in the framework of density functional theory. Based on the calculated elastic constants combined with empirical and semi-empirical formulas, physical properties including ductility/brittleness, hardness and anisotropy were calculated.

View Article and Find Full Text PDF

Structure Models of Metal Melts: A Review.

Materials (Basel)

November 2024

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China.

Nowadays, metallic materials are subject to increasingly high performance requirements, particularly in the context of energy efficiency and environmental sustainability, etc. Researchers typically target properties such as enhanced strength, hardness, and reduced weight, as well as superior physical and chemical characteristics, including electrochemical activity and catalytic efficiency. The structure of metal melts is essential for the design and synthesis of advanced metallic materials.

View Article and Find Full Text PDF

This study investigated the effects of chlorogenic acid (CA) with different levels (0.5 %-2.0 %) on the printing accuracy, micro-structure, rheological properties, thermodynamic properties, texture, digestion characteristics, and other indicators of sweet potato starch (SPS).

View Article and Find Full Text PDF

Leishmaniasis is a parasitic disease that is commonly found in tropical and sub-tropical regions. Currently, there is no protective antileishmanial vaccine, and the available clinical drugs have serious side effects. On the other hand, due to the emergence of multidrug-resistant strains of the causative pathogens, the study and design of novel antileishmanial agents is urgently needed.

View Article and Find Full Text PDF

Towards hybrid protein foods: Heat- and acid-induced hybrid gels formed from micellar casein and pea protein.

Food Res Int

December 2024

Section of Ingredient and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Copenhagen, Denmark. Electronic address:

Article Synopsis
  • - The research investigates the creation of heat- and acid-induced gels using micellar casein and pea protein to meet the growing demand for sustainable dairy alternatives.
  • - Various mixtures of these proteins were analyzed for their gel characteristics, showing that increased pea protein content yields softer gels with distinctive textural properties compared to pure micellar casein gels.
  • - The study found that the hybrid gel made with 25% pea protein closely resembles traditional dairy paneer, indicating potential for customization in dairy alternative products based on protein ratios.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!