An alternative definition of hardness (called the thermodynamic hardness) within the grand canonical ensemble formalism is proposed in terms of the partial derivative of the electronic chemical potential with respect to the thermodynamic chemical potential of the reservoir, keeping the temperature and the external potential constant. This temperature dependent definition may be interpreted as a measure of the propensity of a system to go through a charge transfer process when it interacts with other species, and thus it keeps the philosophy of the original definition. When the derivative is expressed in terms of the three-state ensemble model, in the regime of low temperatures and up to temperatures of chemical interest, one finds that for zero fractional charge, the thermodynamic hardness is proportional to T(I-A), where I is the first ionization potential, A is the electron affinity, and T is the temperature. However, the thermodynamic hardness is nearly zero when the fractional charge is different from zero. Thus, through the present definition, one avoids the presence of the Dirac delta function. We show that the chemical hardness defined in this way provides meaningful and discernible information about the hardness properties of a chemical species exhibiting integer or a fractional average number of electrons, and this analysis allowed us to establish a link between the maximum possible value of the hardness here defined, with the minimum softness principle, showing that both principles are related to minimum fractional charge and maximum stability conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4998701 | DOI Listing |
Sci Rep
December 2024
School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
The welding of titanium alloys is an important topic in today's industrial field, and the interaction between the solder and the base material is crucial for the quality of the welded parts. The structural, elastic, electronic, and thermal properties of Ti-Al-Me (Me = Cu, Fe and Ni) alloys (TAMs) with the face-centered cubic structures were investigated using plane-wave pseudo potential method in the framework of density functional theory. Based on the calculated elastic constants combined with empirical and semi-empirical formulas, physical properties including ductility/brittleness, hardness and anisotropy were calculated.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
Nowadays, metallic materials are subject to increasingly high performance requirements, particularly in the context of energy efficiency and environmental sustainability, etc. Researchers typically target properties such as enhanced strength, hardness, and reduced weight, as well as superior physical and chemical characteristics, including electrochemical activity and catalytic efficiency. The structure of metal melts is essential for the design and synthesis of advanced metallic materials.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, China; Henan Province Engineering Research Center of Agricultural Products Processing Equipment, 471000 Luoyang, China. Electronic address:
This study investigated the effects of chlorogenic acid (CA) with different levels (0.5 %-2.0 %) on the printing accuracy, micro-structure, rheological properties, thermodynamic properties, texture, digestion characteristics, and other indicators of sweet potato starch (SPS).
View Article and Find Full Text PDFHeliyon
December 2024
Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
Leishmaniasis is a parasitic disease that is commonly found in tropical and sub-tropical regions. Currently, there is no protective antileishmanial vaccine, and the available clinical drugs have serious side effects. On the other hand, due to the emergence of multidrug-resistant strains of the causative pathogens, the study and design of novel antileishmanial agents is urgently needed.
View Article and Find Full Text PDFFood Res Int
December 2024
Section of Ingredient and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Copenhagen, Denmark. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!