Efficient algorithms for large-scale quantum transport calculations.

J Chem Phys

Integrated Systems Laboratory, ETH Zürich, 8092 Zürich, Switzerland.

Published: August 2017

Massively parallel algorithms are presented in this paper to reduce the computational burden associated with quantum transport simulations from first-principles. The power of modern hybrid computer architectures is harvested in order to determine the open boundary conditions that connect the simulation domain with its environment and to solve the resulting Schrödinger equation. While the former operation takes the form of an eigenvalue problem that is solved by a contour integration technique on the available central processing units (CPUs), the latter can be cast into a linear system of equations that is simultaneously processed by SplitSolve, a two-step algorithm, on general-purpose graphics processing units (GPUs). A significant decrease of the computational time by up to two orders of magnitude is obtained as compared to standard solution methods.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4998421DOI Listing

Publication Analysis

Top Keywords

quantum transport
8
processing units
8
efficient algorithms
4
algorithms large-scale
4
large-scale quantum
4
transport calculations
4
calculations massively
4
massively parallel
4
parallel algorithms
4
algorithms presented
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!