Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus.

PLoS Comput Biol

Dynamical Systems Laboratory, Physics Department and IFIBA Conicet, University of Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.

Published: August 2017

Different neuronal types within brain motor areas contribute to the generation of complex motor behaviors. A widely studied songbird forebrain nucleus (HVC) has been recognized as fundamental in shaping the precise timing characteristics of birdsong. This is based, among other evidence, on the stretching and the "breaking" of song structure when HVC is cooled. However, little is known about the temperature effects that take place in its neurons. To address this, we investigated the dynamics of HVC both experimentally and computationally. We developed a technique where simultaneous electrophysiological recordings were performed during temperature manipulation of HVC. We recorded spontaneous activity and found three effects: widening of the spike shape, decrease of the firing rate and change in the interspike interval distribution. All these effects could be explained with a detailed conductance based model of all the neurons present in HVC. Temperature dependence of the ionic channel time constants explained the first effect, while the second was based in the changes of the maximal conductance using single synaptic excitatory inputs. The last phenomenon, only emerged after introducing a more realistic synaptic input to the inhibitory interneurons. Two timescales were present in the interspike distributions. The behavior of one timescale was reproduced with different input balances received form the excitatory neurons, whereas the other, which disappears with cooling, could not be found assuming poissonian synaptic inputs. Furthermore, the computational model shows that the bursting of the excitatory neurons arises naturally at normal brain temperature and that they have an intrinsic delay at low temperatures. The same effect occurs at single synapses, which may explain song stretching. These findings shed light on the temperature dependence of neuronal dynamics and present a comprehensive framework to study neuronal connectivity. This study, which is based on intrinsic neuronal characteristics, may help to understand emergent behavioral changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568752PMC
http://dx.doi.org/10.1371/journal.pcbi.1005699DOI Listing

Publication Analysis

Top Keywords

temperature manipulation
8
neuronal dynamics
8
temperature dependence
8
excitatory neurons
8
temperature
6
neuronal
5
hvc
5
manipulation neuronal
4
dynamics forebrain
4
forebrain motor
4

Similar Publications

Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations.

View Article and Find Full Text PDF

In contrast to the traditional perspective that thermal fluctuations are insignificant in surface dynamics, here we report their influence on surface reaction dynamics. Using real-time low-energy electron microscopy imaging of NiAl(100) under both vacuum and O atmospheres, we demonstrate that transient temperature variations substantially alter the direction of atom diffusion between the surface and bulk, leading to markedly different oxidation outcomes. During heating, substantial outward diffusion of atoms from the bulk to the surface results in step growth.

View Article and Find Full Text PDF

Room-temperature creation and conversion of individual skyrmion bags in magnetic multilayered disks.

Nat Commun

January 2025

Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing, 100084, China.

Skyrmion bags, with arbitrary topological charge Q, have recently attracted much interest, since such high-Q topological systems could open a way for topological magnetism research and are promising for spintronic applications with high flexibility for information encoding. Investigation on room-temperature skyrmion bags in magnetic multilayered structures is essential for applications and remains unexplored so far. Here, we demonstrate room-temperature creation and manipulation of individual skyrmion bags in magnetic multilayered disks.

View Article and Find Full Text PDF

Global-optimized energy storage performance in multilayer ferroelectric ceramic capacitors.

Nat Commun

January 2025

Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Multilayer ceramic capacitor as a vital core-component for various applications is always in the spotlight. Next-generation electrical and electronic systems elaborate further requirements of multilayer ceramic capacitors in terms of higher energy storage capabilities, better stabilities, environmental-friendly lead-free, etc., where these major obstacles may restrict each other.

View Article and Find Full Text PDF

Unusual violation of the Wiedemann-Franz law at ultralow temperatures in topological compensated semimetals.

Nat Commun

January 2025

Anhui Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China.

Thermal conductivity and electrical resistivity at ultralow temperatures and high magnetic fields are studied in the topological compensated semimetals TaAs, NbAs, and NdSb. A striking phenomenon is observed where the thermal conductivity shows a T scaling at very low temperatures, while the resistivity shows a T-independent residual term. This indicates a strong violation of the Wiedemann-Franz (WF) law, since the field dependence of κ shows that the low-temperature thermal conductivity is dominated by electronic transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!