AI Article Synopsis

  • TRPM3 channels, which respond to heat and certain chemicals, can be inhibited by receptors that are linked to Gi/o proteins.
  • Co-expressing specific proteins that bind to Gβγ subunits counteracts this inhibition of TRPM3 channels.
  • The research reveals a new signaling pathway that influences TRPM3 channel activity, impacting calcium signals and nociceptive responses in neurons.

Article Abstract

Transient receptor potential melastatin 3 (TRPM3) channels are activated by heat, and chemical ligands such as pregnenolone sulphate (PregS) and CIM0216. Here, we show that activation of receptors coupled to heterotrimeric Gi/o proteins inhibits TRPM3 channels. This inhibition was alleviated by co-expression of proteins that bind the βγ subunits of heterotrimeric G-proteins (Gβγ). Co-expression of Gβγ, but not constitutively active Gαi or Gαo, inhibited TRPM3 currents. TRPM3 co-immunoprecipitated with Gβ, and purified Gβγ proteins applied to excised inside-out patches inhibited TRPM3 currents, indicating a direct effect. Baclofen and somatostatin, agonists of Gi-coupled receptors, inhibited Ca signals induced by PregS and CIM0216 in mouse dorsal root ganglion (DRG) neurons. The GABA receptor agonist baclofen also inhibited inward currents induced by CIM0216 in DRG neurons, and nocifensive responses elicited by this TRPM3 agonist in mice. Our data uncover a novel signaling mechanism regulating TRPM3 channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593506PMC
http://dx.doi.org/10.7554/eLife.26147DOI Listing

Publication Analysis

Top Keywords

trpm3 channels
12
transient receptor
8
receptor potential
8
potential melastatin
8
βγ subunits
8
pregs cim0216
8
inhibited trpm3
8
trpm3 currents
8
drg neurons
8
trpm3
7

Similar Publications

Objective: Monoallelic variants in the transient receptor potential melastatin-related type 3 gene (TRPM3) have been associated with neurodevelopmental manifestations, but knowledge on the clinical manifestations and treatment options is limited. We characterized the clinical spectrum, highlighting particularly the epilepsy phenotype, and the effect of treatments.

Methods: We analyzed retrospectively the phenotypes and genotypes of 43 individuals with TRPM3 variants, acquired from GeneMatcher and collaborations (n = 21), and through a systematic literature search (n = 22).

View Article and Find Full Text PDF
Article Synopsis
  • Specialized heat-sensitive neurons in the skin relay heat sensations, with the sodium-activated potassium channel Slick playing a significant role in controlling noxious heat responses.
  • Researchers created mice lacking Slick in specific sensory neurons (SNS-Slick mice) and found these mice had quicker responses to painful heat tests compared to normal mice.
  • Further experiments revealed that Slick works alongside the heat sensor TRPM3, suggesting that Slick helps to inhibit pain responses by modulating TRPM3 activity in sensory neurons.
View Article and Find Full Text PDF

Muscarinic acetylcholine type 1 receptor antagonism activates TRPM3 to augment mitochondrial function and drive axonal repair in adult sensory neurons.

Mol Metab

December 2024

Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada. Electronic address:

Objective: Antagonism of the muscarinic acetylcholine type 1 receptor (MR) promotes sensory axon repair and is protective in peripheral neuropathy, however, the mechanism remains elusive. We investigated the role of the heat-sensing transient receptor potential melastatin-3 (TRPM3) cation channel in MR antagonism-mediated nerve regeneration and explored the potential of TRPM3 activation to facilitate axonal plasticity.

Methods: Dorsal root ganglion (DRG) neurons from adult control or diabetic rats were cultured and treated with TRPM3 agonists (CIM0216, pregnenolone sulfate) and MR antagonists pirenzepine (PZ) or muscarinic toxin 7 (MT7).

View Article and Find Full Text PDF

Transient Receptor Potential (TRP) ion channels like Vanilloid 1 (TRPV1) and Melastatin 3 (TRPM3) are nonselective cation channels expressed in primary sensory neurons and peripheral nerve endings, which are located in cholesterol- and sphingolipid-rich membrane lipid raft regions and have important roles in pain processing. Besides TRP ion channels a wide variety of voltage-gated ion channels were also described in the membrane raft regions of neuronal cells. Here we investigated the effects of lipid raft disruption by methyl-beta-cyclodextrin (MCD) and sphingomyelinase (SMase) on TRPV1, TRPM3 and voltage-gated L-type Ca channel activation in cultured trigeminal neurons and sensory nerve terminals of the trachea.

View Article and Find Full Text PDF

The TRPM3 gene, part of the transient receptor potential (TRP) cation channel family, plays crucial roles in sensory perception and ion transport. Mutations in TRPM3 are linked to a range of neurological and developmental disorders. The c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!