The crystallization kinetics of methane (sI) hydrate were investigated in a thermoelectrically-cooled microreactor with in situ Raman spectroscopy. Step-wise and precise control of the temperature allowed acquisition of reproducible data within minutes, while the nucleation of methane hydrates can take up to 24 h in traditional batch reactors. The propagation rates of methane hydrate (from 3.1-196.3 μm s) at the gas-liquid interface were measured for different Reynolds' numbers (0.7-68.9), pressures (30.0-80.9 bar), and sub-cooling temperatures (1.0-4.0 K). The precise measurement of the propagation rates and their subsequent analyses revealed a transition from mixed heat-transfer-crystallization-rate-limited to mixed heat-transfer-mass-transfer-crystallization-rate-limited kinetics. A theoretical model, based on heat transfer, mass transfer, and intrinsic crystallization kinetics, was derived for the first time to understand the non-linear relationship between the propagation rate and sub-cooling temperature. The molecular diffusivity of methane within a stagnant film (ahead of the propagation front) was discovered to follow Stokes-Einstein, while calculated Hatta (0.50-0.68), Lewis (128-207), and beta (0.79-116) numbers also confirmed that the diffusive flux influences crystal growth. Understanding methane hydrate crystal growth is important to the atmospheric, oceanic, and planetary sciences and to energy production, storage, and transportation. Our discoveries could someday advance the science of other multiphase, high-pressure, and sub-cooled crystallizations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7lc00645d | DOI Listing |
Microorganisms
December 2024
Sanya Institute of South China Sea Geology, Guangzhou Marine Geological Survey, China Geological Survey, Sanya 572025, China.
In this study, we use petroleum systems modeling (PSM) to quantitatively simulate the uncertainty of biogenic gas generation modes and their impact on the spatial distribution and resource assessment of gas hydrates in the Baiyun Sag, South China Sea. The results are as follows: (1) Biogenic gas generation is significantly affected by thermal state and organic matter type. Low temperature is a primary reason for gas hydrate occurrence in shallower sediments when sufficient methane gas is present.
View Article and Find Full Text PDFGels
December 2024
Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China.
Developing an exceptional reaction medium with high promotion efficiency, desirable biodegradability and good recyclability is necessary for hydrate-based methane storage. In this work, a kind of eco-friendly hydrogel, polyvinyl alcohol-co-acrylic acid (PVA-co-PAA), was utilized to absorb dilute sodium p-styrenesulfonate (SS) solution, for constructing a hybrid reaction medium for methane hydrate formation. Hydrogels or dilute SS solutions (1-4 mmol L) had weak or even no promoting effects on hydrate formation kinetics, while the combination of them could synergistically promote methane hydrate formation.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
The formation of natural gas hydrates presents significant economic and safety challenges to the petroleum and gas industry, necessitating the development of effective prevention strategies. This study investigates an environmentally sustainable Tenebrio molitor antifreeze protein (TmAFP) modified to be a potential kinetic hydrate inhibitor. The aim of this study was to enhance the inhibitory activity of TmAFP by systematically substituting threonine (Thr) residues with glycine (Gly), alanine (Ala), or serine (Ser) at positions 29, 39, and 53.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland.
The modern metallurgical industry produces approximately 90% of the volume of all produced steel; for this, integrated technology based on fossil materials such as coal, fluxes, and especially iron ore is used. This industry generates large amounts of waste and by-products at almost all stages of production. Alternative iron and steel production technologies based on iron ore, methane, or pure hydrogen are also not waste-free.
View Article and Find Full Text PDFSci Total Environ
January 2025
Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Methane leaking from the deep seabed is a primary source of carbon and energy for various microorganisms, sustaining the evolution and productivity of cold seep ecosystems. However, the dynamics of methane hydrate formation under methane seepage conditions and potential impacts on the evolution of cold seep ecosystems remain unclear. This study investigated the dynamic formation characteristics of gas hydrates within cold seep sediments by simulating the methane leakage process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!