Aedes aegypti mosquitoes experimentally infected with Wolbachia are being utilized in programs to control the spread of arboviruses such as dengue, chikungunya and Zika. Wolbachia-infected mosquitoes can be released into the field to either reduce population sizes through incompatible matings or to transform populations with mosquitoes that are refractory to virus transmission. For these strategies to succeed, the mosquitoes released into the field from the laboratory must be competitive with native mosquitoes. However, maintaining mosquitoes in the laboratory can result in inbreeding, genetic drift and laboratory adaptation which can reduce their fitness in the field and may confound the results of experiments. To test the suitability of different Wolbachia infections for deployment in the field, it is necessary to maintain mosquitoes in a controlled laboratory environment across multiple generations. We describe a simple protocol for maintaining Ae. aegypti mosquitoes in the laboratory, which is suitable for both Wolbachia-infected and wild-type mosquitoes. The methods minimize laboratory adaptation and implement outcrossing to increase the relevance of experiments to field mosquitoes. Additionally, colonies are maintained under optimal conditions to maximize their fitness for open field releases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614331 | PMC |
http://dx.doi.org/10.3791/56124 | DOI Listing |
One Health Outlook
January 2025
Medical Virology Unit, Faculty of Basic Medical and Applied Sciences, Lead City University and Primary Health Care Board, Ibadan, Oyo State, Nigeria.
Background: Dengue fever (DF) poses a growing global threat, necessitating a comprehensive one-health approach to address its complex interplay between human, animal, and environmental factors. In Oyo State, Nigeria, the true burden of DF remains unknown due to underdiagnosis and misdiagnosis as malaria, exacerbated by poor health-seeking behavior, weak surveillance systems, and inadequate health infrastructure. Adopting a one-health approach is crucial to understanding the dynamics of DF transmission.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.
View Article and Find Full Text PDFUnlabelled: The yellow fever mosquito ( ) is an organism of high medical importance because it is the primary vector for diseases such as yellow fever, Zika, dengue, and chikungunya. Its medical importance has made it a subject of numerous efforts to understand their biology. One such effort, was the development of a high-quality reference genome (AaegL5).
View Article and Find Full Text PDFHeliyon
January 2025
The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda.
Isoxazole and oxadiazole derivatives inhibiting 3-hydroxykynurenine transaminase (3HKT) are potential larvicidal candidates. This study aims to identify more suited potential inhibitors of 3HKT (3HKT) through molecular docking and molecular dynamics simulation. A total of 958 compounds were docked against 3HKT (PDB ID: 2CH2) using Autodock vina and Autodock4.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world's population at risk. Blocking virus replication in mosquitoes is a promising approach to prevent arbovirus transmission, the development of which requires in-depth knowledge of virus-host interactions and mosquito immunity. By integrating multi-omics data, we find that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topologically associated domain in the genome of the Aedes aegypti mosquito.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!