Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 177
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 177
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 251
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1037
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3155
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Natural products represent an inexhaustible source of novel therapeutic agents. Their complex and constrained three-dimensional structures endow these molecules with exceptional biological properties, thereby giving them a major role in drug discovery programs. However, the search for new bioactive metabolites is hampered by the chemical complexity of the biological matrices in which they are found. The purification of single constituents from such matrices requires such a significant amount of work that it should be ideally performed only on molecules of high potential value (i.e., chemical novelty and biological activity). Recent bioinformatics approaches based on mass spectrometry metabolite profiling methods are beginning to address the complex task of compound identification within complex mixtures. However, in parallel to these developments, methods providing information on the bioactivity potential of natural products prior to their isolation are still lacking and are of key interest to target the isolation of valuable natural products only. In the present investigation, we propose an integrated analysis strategy for bioactive natural products prioritization. Our approach uses massive molecular networks embedding various informational layers (bioactivity and taxonomical data) to highlight potentially bioactive scaffolds within the chemical diversity of crude extracts collections. We exemplify this workflow by targeting the isolation of predicted active and nonactive metabolites from two botanical sources (Bocquillonia nervosa and Neoguillauminia cleopatra) against two biological targets (Wnt signaling pathway and chikungunya virus replication). Eventually, the detection and isolation processes of a daphnane diterpene orthoester and four 12-deoxyphorbols inhibiting the Wnt signaling pathway and exhibiting potent antiviral activities against the CHIKV virus are detailed. Combined with efficient metabolite annotation tools, this bioactive natural products prioritization pipeline proves to be efficient. Implementation of this approach in drug discovery programs based on natural extract screening should speed up and rationalize the isolation of bioactive natural products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.7b00413 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!